Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation


The ongoing decline of Arctic sea ice exposes the ocean to anomalous surface heat and freshwater fluxes, resulting in positive buoyancy anomalies that can affect ocean circulation. In this study, we use an optimal flux perturbation framework and comprehensive climate model simulations to estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to such buoyancy forcing over the Arctic and globally, and more generally to sea-ice decline. It is found that on decadal timescales, flux anomalies over the subpolar North Atlantic have the largest impact on the AMOC, while on multi-decadal timescales (longer than 20 years), flux anomalies in the Arctic become more important. These positive buoyancy anomalies spread to the North Atlantic, weakening the AMOC and its poleward heat transport. Therefore, the Arctic sea-ice decline may explain the suggested slow-down of the AMOC and the ‘Warming Hole’ persisting in the subpolar North Atlantic.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes in Arctic sea ice since 1979.
Figure 2: Observational evidence of the AMOC slow-down.
Figure 3: Optimal surface fluxes to modify the AMOC.
Figure 4: AMOC sensitivity to optimal heat and freshwater fluxes.
Figure 5: Estimated decadal changes in ocean surface fluxes and the model AMOC response.
Figure 6: Arctic sea-ice retreat and its impacts simulated by a climate GCM.


  1. Parkinson, C. L. & Cavalieri, D. J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. 113, C07003 (2008).

    Article  Google Scholar 

  2. Stroeve, J. et al. Arctic sea ice extent plummets in 2007. Eos 19, 1365–1387 (2008).

    Google Scholar 

  3. McCarthy, G. et al. Observed interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. Geophys. Res. Lett. 39, L19609 (2012).

    Google Scholar 

  4. Smeed, D. A. et al. Observed decline of the Atlantic Meridional Overturning Circulation 2004 to 2012. Ocean Sci. 10, 29–38 (2014).

    Article  Google Scholar 

  5. Jackson, L. C., Peterson, K. A., Roberts, C. D. & Wood, R. A. Recent slowing of Atlantic Overturning Circulation as a recovery from earlier strengthening. Nat. Geosci. 9, 518522 (2016).

    Google Scholar 

  6. Zhao, J. & Johns, W. Wind-forced interannual variability of the Atlantic Meridional Overturning Circulation at 26.5°N. J. Geophys. Res. 119, 2403–2419 (2014).

    Google Scholar 

  7. Buckley, M. W. & Marshall, J. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev. Geophys. 54, 5–63 (2016).

    Article  Google Scholar 

  8. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean Overturning Circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  9. Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. Clim. Dynam. 26, 7187–7197 (2013).

    Article  Google Scholar 

  10. Drijfhout, S., van Oldenborgh, G. J. & Cimatoribus, A. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Clim. 25, 8373–8379 (2012).

    Article  Google Scholar 

  11. Drijfhout, S. Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Sci. Rep. 5, 14877 (2015).

    CAS  Article  Google Scholar 

  12. Sutton, R. W. & Hodson, D. L. R. Atlantic ocean forcing of North American and European summer climate. Science 309, 115–118 (2005).

    CAS  Article  Google Scholar 

  13. Srokosz, M. & Bryden, H. L. Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348, 1255575 (2015).

    CAS  Article  Google Scholar 

  14. Robson, J., Hodson, D., Hawkins, E. & Sutton, R. Atlantic overturning in decline? Nat. Geosci. 7, 2–3 (2014).

    CAS  Article  Google Scholar 

  15. Deshayes, J. et al. Oceanic hindcast simulations at high resolution suggest that the Atlantic MOC is bistable. Geophys. Res. Lett. 40, 3069–3073 (2013).

    Article  Google Scholar 

  16. Heimbach, P. et al. Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: toward observing system design. Deep-Sea Res. II 58, 1858–1879 (2011).

    Article  Google Scholar 

  17. Bugnion, V., Hill, C. & Stone, P. H. An adjoint analysis of the meridional overturning circulation in a hybrid coupled model. J. Clim. 19, 3751–3767 (2006).

    Article  Google Scholar 

  18. Sévellec, F. & Fedorov, A. V. AMOC sensitivity to surface buoyancy fluxes: stronger ocean meridional heat transport with a weaker AMOC? Clim. Dynam. 47, 1497–1513 (2016).

    Article  Google Scholar 

  19. Pillar, H. R., Heimbach, P., Johnson, H. L. & Marshall, D. P. Dynamical attribution of recent variability in Atlantic overturning. J. Clim. 29, 3339–3352 (2016).

    Article  Google Scholar 

  20. Madec, G., Delecluse, P., Imbard, M. & Lévy, C. Opa 8.1 Ocean General Circulation Model Reference Manual (Technical Report, Institut Pierre-Simon Laplace, 1998).

  21. Weaver, A. T., Vialard, J. & Anderson, D. L. T. Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean. part 1: Formulation, internal diagnostics and consistency checks. Mon. Weath. Rev. 131, 1360–1378 (2003).

    Article  Google Scholar 

  22. Sévellec, F. & Fedorov, A. V. The leading, interdecadal eigenmode of the Atlantic Meridional Overturning Circulation in a realistic ocean model. J. Clim. 26, 2160–2183 (2013).

    Article  Google Scholar 

  23. Sévellec, F. & Fedorov, A. V. Optimal excitation of AMOC decadal variability: links to the subpolar ocean. Prog. Oceanogr. 132, 287–304 (2015).

    Article  Google Scholar 

  24. Yang, Q. et al. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic Overturning Circulation. Nat. Commun. 7, 20525 (2016).

    Google Scholar 

  25. IPCC Climate Change 2013: The Physical Science Basis (Cambridge Univ. Press, 2013).

  26. Lindsay, R., Wensnahan, M., Schweiger, A. & Zhang, J. Evaluation of seven different atmospheric reanalysis products in the Arctic. J. Clim. 27, 2588–2606 (2014).

    Article  Google Scholar 

  27. Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  28. Böning, C. W., Behrens, E., Biastoch, A., Getzla, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).

    Article  Google Scholar 

  29. Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173 (2002).

    CAS  Article  Google Scholar 

  30. Jackson, L. C. et al. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dynam. 45, 3299–3316 (2015).

    Article  Google Scholar 

  31. Boé, J., Hall, A. & Qiu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2, 341–343 (2009).

    Article  Google Scholar 

  32. Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data (NASA DAAC at the National Snow and Ice Data Center, 1996).

  33. Muir, L. C. & Fedorov, A. V. How the AMOC affects ocean temperatures on decadal to centennial timescales: the North Atlantic versus an interhemispheric seesaw. Clim. Dynam. 45, 151–160 (2015).

    Article  Google Scholar 

  34. Dee, D. P. et al. The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  35. Frajka-Williams, E. et al. Compensation between meridional flow components of the Atlantic MOC at 26°N. Ocean Sci. 12, 481–496 (2016).

    CAS  Article  Google Scholar 

  36. Talley, L. D., Reid, J. L. & Robbins, P. E. Data-based meridional overturning streamfunctions for the global ocean. J. Clim. 16, 3213–3226 (2003).

    Article  Google Scholar 

  37. Ganachaud, A. & Wunsch, C. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408, 453–457 (2000).

    CAS  Article  Google Scholar 

  38. Lindsay, R. & Schweiger, A. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. Cryosphere 9, 269–283 (2015).

    Article  Google Scholar 

  39. Shields, C. et al. The low-resolution CCSM4. J. Clim. 25, 3993–4014 (2012).

    Article  Google Scholar 

  40. Eisenman, I. & Wettlaufer, J. S. Nonlinear threshold behavior during the loss of Arctic sea ice. Proc. Natl Acad. Sci. USA 106, 28–32 (2009).

    CAS  Article  Google Scholar 

  41. Briegleb, P. & Light, B. A Delta-Eddington Multiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model Tech. Note NCAR/TN-472+STR (National Center for Atmospheric Research, 2007).

  42. Burls, N. J. & Fedorov, A. V. What controls the mean east–west sea surface temperature gradient in the equatorial Pacific: the role of cloud albedo. J. Clim. 27, 2757–2778 (2014).

    Article  Google Scholar 

Download references


This research was supported by grant to F.S. from the Natural and Environmental Research Council UK (SMURPHS, NE/N005767/1) and by grants to A.V.F. from DOE Office of Science (DE-SC0016538) and NOAA (NA14OAR4310277). Support from the Yale University High Performance Computing facilities is also acknowledged. We thank B. Dobbins for his help with setting up numerical experiments.

Author information

Authors and Affiliations



All three authors contributed equally to the experimental design, the data analysis, and the writing of the manuscript.

Corresponding author

Correspondence to Florian Sévellec.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1347 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sévellec, F., Fedorov, A. & Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nature Clim Change 7, 604–610 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing