Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization


The Paris Agreement aims to constrain global mean temperature (GMT) increases to 2 °C above pre-industrial levels, with an aspirational target of 1.5 °C. However, the pathway to these targets1,2,3,4,5,6 and the impacts of a 1.5 °C and 2 °C warming on extreme El Niño and La Niña events—which severely influence weather patterns, agriculture, ecosystems, public health and economies7,8,9,10,11,12,13,14,15,16—is little known. Here, by analysing climate models participating in the Climate Model Intercomparison Project’s Phase 5 (CMIP5; ref. 17) under a most likely emission scenario1,2, we demonstrate that extreme El Niño frequency increases linearly with the GMT towards a doubling at 1.5 °C warming. This increasing frequency of extreme El Niño events continues for up to a century after GMT has stabilized, underpinned by an oceanic thermocline deepening that sustains faster warming in the eastern equatorial Pacific than the off-equatorial region. Ultimately, this implies a higher risk of extreme El Niño to future generations after GMT rise has halted. On the other hand, whereas previous research suggests extreme La Niña events may double in frequency under the 4.5 °C warming scenario8, the results presented here indicate little to no change under 1.5 °C or 2 °C warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes associated with 1.5 °C warming from the pre-industrial level.
Figure 2: Temporal evolution of multi-model ensemble mean changes under the RCP2.6 scenario.
Figure 3: Mechanism for a continuous increase in extreme El Niño frequency after emissions stabilize.


  1. 1

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Moss, R. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Google Scholar 

  3. 3

    Ranger, N. et al. Is it possible to limit global warming to no more than 1.5 °C? Climatic Change 111, 973–981 (2012).

    Article  Google Scholar 

  4. 4

    Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).

    Article  Google Scholar 

  5. 5

    Rogelj, J., McCollum, D. L., O’Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nat. Clim. Change 3, 405–412 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nat. Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  7. 7

    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Cai, W. et al. More frequent extreme La Niña events under greenhouse warming. Nat. Clim. Change 5, 132–137 (2015).

    Article  Google Scholar 

  9. 9

    Philander, S. G. H. Anomalous El Niño of 1982–83. Nature 305, 16 (1983).

    Article  Google Scholar 

  10. 10

    Merlen, G. The 1982–1983 El Niño: some of its consequences for Galapagos wildlife. Oryx 18, 210–214 (1984).

    Article  Google Scholar 

  11. 11

    Glynn, P. W. & de Weerdt, W. H. Elimination of two reef-building hydrocorals following the 1982–83 El Niño. Science 253, 69–71 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Vos, R., Velasco, M. & Edgar de Labastida, R. Economic and Social Effects of El Niño in Ecuador, 1997–1998 Technical papers series POV-107, 38 (Inter-American Development Bank Sustainable Development Dept., 1999).

  13. 13

    Aronson, R. B. et al. Coral bleach-out in Belize. Nature 405, 36 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Bell, G. D. et al. Climate Assessment for 1998. Bull. Am. Meteorol. Soc. 80, 1040 (1999).

    Article  Google Scholar 

  15. 15

    McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Vincent, E. M. et al. Interannual variability of the South Pacific Convergence Zone and implications for tropical cyclone genesis. Clim. Dynam. 36, 1881–1896 (2011).

    Article  Google Scholar 

  17. 17

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  18. 18

    Schellnhuber, H. J., Cramer, W., Nakicenovic, N., Wigley, T. M. L. & Yohe, G. (eds) Avoiding Dangerous Climate Change (Cambridge Univ. Press, 2006).

  19. 19

    Mahlstein, I., Knutti, R., Solomon, S. & Portmann, R. W. Early onset of significant local warming in low latitude countries. Environ. Res. Lett. 6, 034009 (2011).

    Article  Google Scholar 

  20. 20

    Submissions from Parties FCCC/KP/AWG/2009/MISC.1/Add.1 (UNFCCC, 2009).

  21. 21

    Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  22. 22

    Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    Article  Google Scholar 

  23. 23

    Schaeffer, M., Hare, W., Rahmstorf, S. & Vermeer, M. Long-term sea-level rise implied by 1.5 °C and 2 °C warming levels. Nat. Clim. Change 2, 867–870 (2012).

    Article  Google Scholar 

  24. 24

    Levermann, A. et al. The multimillennial sea level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Dutton, A. et al. Sea level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Lengaigne, M. & Vecchi, G. A. Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Clim. Dynam. 35, 299–313 (2009).

    Article  Google Scholar 

  27. 27

    Takahashi, K., Montecinos, A., Goubanova, K. & Dewitte, B. ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett. 38, L10704 (2011).

    Article  Google Scholar 

  28. 28

    Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2016).

    CAS  Article  Google Scholar 

  29. 29

    Power, S. P. et al. Humans have already increased the risk of major disruptions to Pacific rainfall. Nat. Commun. 8, 14368 (2017).

    CAS  Article  Google Scholar 

  30. 30

    Liu, Z., Vavrus, S., He, F., Wen, N. & Zhong, Y. Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J. Clim. 18, 4684–4700 (2005).

    Article  Google Scholar 

Download references


This work is supported by Centre for Southern Hemisphere Oceans Research. W.C. and G.W. are supported by the Earth Science and Climate Change Hub of the Australian Government’s National Environmental Science Programme, and a CSIRO Office of Chief Executive Science Leader award. A.S. is supported by the Earth Science and Climate Change Hub of the Australian Government’s National Environmental Science Programme and the Australian Research Council. PMEL contribution 4427.

Author information




W.C. and G.W. conceived the study. G.W. performed all model analysis. W.C. wrote the initial manuscript with support from A.S. and G.W. All authors contributed to interpreting results, discussion of the associated dynamics, and improvement of this paper.

Corresponding authors

Correspondence to Wenju Cai or Lixin Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1716 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Cai, W., Gan, B. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nature Clim Change 7, 568–572 (2017).

Download citation

Further reading