Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A revival of Indian summer monsoon rainfall since 2002


A significant reduction in summer monsoon rainfall has been observed in northern central India during the second half of the twentieth century, threatening water security and causing widespread socio-economic impacts. Here, using various observational data sets, we show that monsoon rainfall has increased in India at 1.34 mm d−1 decade−1 since 2002. This apparent revival of summer monsoon precipitation is closely associated with a favourable land–ocean temperature gradient, driven by a strong warming signature over the Indian subcontinent and slower rates of warming over the Indian Ocean. The continental Indian warming is attributed to a reduction of low cloud due to decreased ocean evaporation in the Arabian Sea, and thus decreased moisture transport to India. Global climate models fail to capture the observed rainfall revival and corresponding trends of the land–ocean temperature gradient, with implications for future projections of the Indian monsoon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Precipitation time series and spatial trends.
Figure 2: Temperature time series and spatial trends.
Figure 3: Meridional temperature gradient.
Figure 4: Scatter plot of the ISM precipitation trends versus the pre-monsoon land–ocean temperature gradient trends.
Figure 5: Time series of multiple variables.


  1. 1

    Auffhammer, M., Ramanathan, V. & Vincent, J. R. Climate change, the monsoon, and rice yield in India. Clim. Change 111, 411–424 (2012).

    Article  Google Scholar 

  2. 2

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Wheeler, T. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 15, 3785–3808 (2011).

    Article  Google Scholar 

  6. 6

    Chung, C. E. & Ramanathan, V. Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J. Clim. 19, 2036–2045 (2006).

    Article  Google Scholar 

  7. 7

    Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun. 6, 7423 (2015).

    Article  Google Scholar 

  8. 8

    Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 32177 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Ramanathan, V. et al. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc. Natl Acad. Sci. USA 102, 5326–5333 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Asoka, A., Gleeson, T., Wada, Y. & Mishra, V. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nat. Geosci. 10, 109–117 (2017).

    CAS  Article  Google Scholar 

  12. 12

    Kajikawa, Y., Yasunari, T., Yoshida, S. & Fujinami, H. Advanced Asian summer monsoon onset in recent decades. Geophys. Res. Lett. 39, L03803 (2012).

    Article  Google Scholar 

  13. 13

    Krishnamurti, T. N. Summer monsoon experiment—a review. Mon. Weath. Rev. 113, 1590–1626 (1985).

    Article  Google Scholar 

  14. 14

    Luo, H. B. & Yanai, M. The large-scale circulation and heat-sources over the Tibetan plateau and surrounding areas during the early summer of 1979. Part 1: precipitation and kinematic analyses. Mon. Weath. Rev. 111, 922–944 (1983).

    Article  Google Scholar 

  15. 15

    Murakami, T. & Ding, Y. H. Wind and temperature–changes over Eurasia during the early summer of 1979. J. Meteorol. Soc. Jpn 60, 183–196 (1982).

    Article  Google Scholar 

  16. 16

    Webster, P. J. In Monsoons 3–32 (John Wiley, 1987).

  17. 17

    Young, J. A. In Monsoons 211–243 (John Wiley, 1987).

  18. 18

    Zhang, Z. Q., Chan, J. C. L. & Ding, Y. H. Characteristics, evolution and mechanisms of the summer monsoon onset over Southeast Asia. Int. J. Climatol. 24, 1461–1482 (2004).

    Article  Google Scholar 

  19. 19

    Fu, C. & Fletcher, J. O. The relationship between Tibet–Tropical Ocean thermal contrast and interannual variability of Indian monsoon rainfall. J. Clim. Appl. Meteorol. 24, 841–847 (1985).

    Article  Google Scholar 

  20. 20

    Li, C. F. & Yanai, M. The onset and interannual variability of the Asian summer monsoon in relation to land sea thermal contrast. J. Clim. 9, 358–375 (1996).

    Article  Google Scholar 

  21. 21

    Meehl, G. A. Influence of the land-surface in the Asian summer monsoon—external conditions versus internal feedbacks. J. Clim. 7, 1033–1049 (1994).

    Article  Google Scholar 

  22. 22

    England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  23. 23

    Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earths Future 1, 19–32 (2013).

    Article  Google Scholar 

  24. 24

    Roxy, M. K., Ritika, K., Terray, P. & Masson, S. The curious case of Indian Ocean warming. J. Clim. 27, 8501–8509 (2014).

    Article  Google Scholar 

  25. 25

    Park, I. H., Min, S. K., Yeh, S. W., Weller, E. & Kim, S. T. Attribution of the 2015 record high sea surface temperatures over the central equatorial Pacific and tropical Indian Ocean. Environ. Res. Lett. 12, 044024 (2017).

    Article  Google Scholar 

  26. 26

    Su, J. Z., Zhang, R. H. & Wang, H. J. Consecutive record-breaking high temperatures marked the handover from hiatus to accelerated warming. Sci. Rep. 7, 43735 (2017).

    Article  Google Scholar 

  27. 27

    Dai, A. G. et al. The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J. Geophys. Res. 118, 7024–7045 (2013).

    Article  Google Scholar 

  28. 28

    Lau, K. M., Kim, M. K. & Kim, K. M. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim. Dynam. 26, 855–864 (2006).

    Article  Google Scholar 

  29. 29

    Wu, G. X. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 00404 (2012).

    Article  Google Scholar 

  30. 30

    Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Yu, R. C., Wang, B. & Zhou, T. J. Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys. Res. Lett. 31, L22212 (2004).

    Google Scholar 

  32. 32

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  33. 33

    Salzmann, M. & Cherian, R. On the enhancement of the Indian summer monsoon drying by Pacific multidecadal variability during the latter half of the twentieth century. J. Geophys. Res. 120, 9103–9118 (2015).

    Google Scholar 

  34. 34

    Gimeno, L., Drumond, A., Nieto, R., Trigo, R. M. & Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 37, L13804 (2010).

    Article  Google Scholar 

  35. 35

    Wei, J. F., Su, H. & Yang, Z. L. Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe. Clim. Dynam. 46, 467–481 (2016).

    Article  Google Scholar 

  36. 36

    Boucher, O. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 571–657 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  37. 37

    Jin, Q., Wei, J. & Yang, Z. L. Positive response of Indian summer rainfall to Middle East dust. Geophys. Res. Lett. 41, 4068–4074 (2014).

    Article  Google Scholar 

  38. 38

    Jin, Q., Wei, J., Yang, Z. L., Pu, B. & Huang, J. Consistent response of Indian summer monsoon to Middle East dust in observations and simulations. Atmos. Chem. Phys. 15, 9897–9915 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Jin, Q., Yang, Z.-L. & Wei, J. Seasonal responses of Indian summer monsoon to dust aerosols in the Middle East, India, and China. J. Clim. 29, 6329–6349 (2016).

    Article  Google Scholar 

  40. 40

    Ackerman, A. S. et al. Reduction of tropical cloudiness by soot. Science 288, 1042–1047 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Bollasina, M., Nigam, S. & Lau, K. M. Absorbing aerosols and summer monsoon evolution over South Asia: an observational portrayal. J. Clim. 21, 3221–3239 (2008).

    Article  Google Scholar 

  42. 42

    Koren, I., Kaufman, Y. J., Remer, L. A. & Martins, J. V. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303, 1342–1345 (2004).

    CAS  Article  Google Scholar 

  43. 43

    Lee, S. Y., Shin, H. J. & Wang, C. Nonlinear effects of coexisting surface and atmospheric forcing of anthropogenic absorbing aerosols: impact on the South Asian monsoon onset. J. Clim. 26, 5594–5607 (2013).

    Article  Google Scholar 

  44. 44

    Lee, S. Y. & Wang, C. The response of the South Asian summer monsoon to temporal and spatial variations in absorbing aerosol radiative forcing. J. Clim. 28, 6626–6646 (2015).

    Article  Google Scholar 

  45. 45

    Yu, H. B., Liu, S. C. & Dickinson, R. E. Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J. Geophys. Res. 107, AAC3-1–AAC3–14 (2002).

    Article  Google Scholar 

  46. 46

    Ratnam, J. V., Behera, S. K., Ratna, S. B., Rajeevan, M. & Yamagata, T. Anatomy of Indian heatwaves. Sci. Rep. 6, 24395 (2016).

    CAS  Article  Google Scholar 

  47. 47

    Wang, B. et al. Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl Acad. Sci. USA 110, 5347–5352 (2013).

    CAS  Article  Google Scholar 

  48. 48

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  49. 49

    Schneider, U. et al. GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol. 115, 15–40 (2014).

    Article  Google Scholar 

  50. 50

    Chen, M. Y., Xie, P. P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

    Article  Google Scholar 

  51. 51

    Adler, R. F. et al. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 4, 1147–1167 (2003).

    Article  Google Scholar 

  52. 52

    Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article  Google Scholar 

  53. 53

    Naidu, C. V. et al. Is summer monsoon rainfall decreasing over India in the global warming era? J. Geophys. Res. 114, D24108 (2009).

    Article  Google Scholar 

  54. 54

    Rajeevan, M., Bhate, J., Kale, J. A. & Lal, B. High resolution daily gridded rainfall data for the Indian region: analysis of break and active monsoon spells. Curr. Sci. India 91, 296–306 (2006).

    Google Scholar 

  55. 55

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  56. 56

    Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in global surface air-temperature. Theor. Appl. Climatol. 41, 11–21 (1990).

    Article  Google Scholar 

  57. 57

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  58. 58

    Kato, S. et al. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740 (2013).

    Article  Google Scholar 

  59. 59

    Wielicki, B. A. Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 1590 (1996).

    Article  Google Scholar 

  60. 60

    Rienecker, M. M. et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 24, 3624–3648 (2011).

    Article  Google Scholar 

Download references


This study was supported by the US National Science Foundation (AGS-1339264), US DOE (DE-FG02-94ER61937), and the National Research Foundation (NRF) of Singapore to the Center for Environmental Sensing and Modeling (CENSAM) of the Singapore-MIT Alliance for Research and Technology (SMART) centre. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making their model output available. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We truly appreciate the efforts of various responsible groups for making their observational or reanalysis data publicly available. We also thank D. Rothenberg for providing scripts to download the CMIP5 data and his valuable comments on this work.

Author information




Q.J. and C.W. designed analysis strategy, Q.J. performed data analyses, Q.J. and C.W. wrote the paper.

Corresponding author

Correspondence to Chien Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7052 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, Q., Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nature Clim Change 7, 587–594 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing