Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Balancing Europe’s wind-power output through spatial deployment informed by weather regimes

Abstract

As wind and solar power provide a growing share of Europe’s electricity1, understanding and accommodating their variability on multiple timescales remains a critical problem. On weekly timescales, variability is related to long-lasting weather conditions, called weather regimes2,3,4,5, which can cause lulls with a loss of wind power across neighbouring countries6. Here we show that weather regimes provide a meteorological explanation for multi-day fluctuations in Europe’s wind power and can help guide new deployment pathways that minimize this variability. Mean generation during different regimes currently ranges from 22 GW to 44 GW and is expected to triple by 2030 with current planning strategies. However, balancing future wind capacity across regions with contrasting inter-regime behaviour—specifically deploying in the Balkans instead of the North Sea—would almost eliminate these output variations, maintain mean generation, and increase fleet-wide minimum output. Solar photovoltaics could balance low-wind regimes locally, but only by expanding current capacity tenfold. New deployment strategies based on an understanding of continent-scale wind patterns and pan-European collaboration could enable a high share of wind energy whilst minimizing the negative impacts of output variability.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Weather-regime-dependent change in wind electricity generation.
Figure 2: Wind anomalies during weather regimes.
Figure 3: Capacity factors and wind-power output in winter.
Figure 4: Future European wind-power output in different scenarios.
Figure 5: Time series of European wind-power output.

References

  1. 1

    International Energy Agency (IEA) World Energy Outlook 2016 (Organisation for Economic Co-operation and Development, 2016).

  2. 2

    Wallace, J. M. & Gutzler, D. S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weath. Rev. 109, 784–812 (1981).

    Article  Google Scholar 

  3. 3

    Vautard, R. Multiple weather regimes over the North Atlantic: analysis of precursors and successors. Mon. Weath. Rev. 118, 2056–2081 (1990).

    Article  Google Scholar 

  4. 4

    Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 455, 523–527 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Ferranti, L., Corti, S. & Janousek, M. Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic sector. Q. J. R. Meteorol. Soc. 141, 916–924 (2015).

    Article  Google Scholar 

  6. 6

    Cannon, D. J., Brayshaw, D. J., Methven, J., Coker, P. J. & Lenaghan, D. Using reanalysis data to quantify extreme wind power generation statistics: a 33 year case study in Great Britain. Renew. Energy 75, 767–778 (2015).

    Article  Google Scholar 

  7. 7

    Peters, G. P. et al. Key indicators to track current progress and future ambition of the Paris Agreement. Nat. Clim. Change 7, 118–122 (2017).

    Article  Google Scholar 

  8. 8

    Kempton, W., Pimenta, F. M., Veron, D. E. & Colle, B. A. Electric power from offshore wind via synoptic-scale interconnection. Proc. Natl Acad. Sci. USA 107, 7240–7245 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Delucchi, M. A. & Jacobson, M. Z. Providing all global energy with wind, water, and solar power, Part II: reliability, system and transmission costs, and policies. Energy Policy 39, 1170–1190 (2011).

    Article  Google Scholar 

  10. 10

    Pfenninger, S. et al. Potential for concentrating solar power to provide baseload and dispatchable power. Nat. Clim. Change 4, 689–692 (2014).

    Article  Google Scholar 

  11. 11

    Rodríguez, R. A., Becker, S., Andresen, G. B., Heide, D. & Greiner, M. Transmission needs across a fully renewable European power system. Renew. Energy 63, 467–476 (2014).

    Article  Google Scholar 

  12. 12

    Pozo-Vázquez, D., Tovar-Pescador, J., Gámiz-Fortis, S. R., Esteban-Parra, M. J. & Castro-Díez, Y. NAO and solar radiation variability in the European North Atlantic region. Geophys. Res. Lett. 31, L05201 (2004).

    Article  Google Scholar 

  13. 13

    Heide, D. et al. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe. Renew. Energy 35, 2483–2489 (2010).

    Article  Google Scholar 

  14. 14

    Santos-Alamillos, F. J., Pozo-Vázquez, D., Ruiz-Arias, J. A., Von Bremen, L. & Tovar-Pescador, J. Combining wind farms with concentrating solar plants to provide stable renewable power. Renew. Energy 76, 539–550 (2015).

    Article  Google Scholar 

  15. 15

    Pfenninger, S. & Keirstead, J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Appl. Energy 152, 83–93 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Olauson, J. et al. Net load variability in Nordic countries with a highly or fully renewable power system. Nat. Energy 1, 16175 (2016).

    Article  Google Scholar 

  17. 17

    Brayshaw, D. J., Troccoli, A., Fordham, R. & Methven, J. The impact of large scale atmospheric circulation patterns on wind power generation and its potential predictability: a case study over the UK. Renew. Energy 36, 2087–2096 (2011).

    Article  Google Scholar 

  18. 18

    Clark, R. T., Bett, P. E., Thornton, H. E. & Scaife, A. A. Skilful seasonal predictions for the European energy industry. Environ. Res. Lett. 12, 024002 (2017).

    Article  Google Scholar 

  19. 19

    Jerez, S. & Trigo, R. M. Time-scale and extent at which large-scale circulation modes determine the wind and solar potential in the Iberian Peninsula. Environ. Res. Lett. 8, 044035 (2013).

    Article  Google Scholar 

  20. 20

    Santos, J. A., Belo-Pereira, M., Fraga, H. & Pinto, J. G. Understanding climate change projections for precipitation over western Europe with a weather typing approach. J. Geophys. Res. 121, 2015JD024399 (2016).

    Google Scholar 

  21. 21

    Zubiate, L., McDermott, F., Sweeney, C. & O’Malley, M. Spatial variability in winter NAO–wind speed relationships in western Europe linked to concomitant states of the East Atlantic and Scandinavian patterns. Q. J. R. Meteorol. Soc. 143, 552–562 (2017).

    Article  Google Scholar 

  22. 22

    Pfenninger, S. & Staffell, I. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy 114, 1251–1265 (2016).

    Article  Google Scholar 

  23. 23

    Staffell, I. & Pfenninger, S. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114, 1224–1239 (2016).

    Article  Google Scholar 

  24. 24

    Psiloglou, B. E., Giannakopoulos, C., Majithia, S. & Petrakis, M. Factors affecting electricity demand in Athens, Greece and London, UK: a comparative assessment. Energy 34, 1855–1863 (2009).

    Article  Google Scholar 

  25. 25

    Jacobson, M. Z., Delucchi, M. A., Cameron, M. A. & Frew, B. A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl Acad. Sci. USA 112, 15060–15065 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Rodriguez, R. A., Becker, S. & Greiner, M. Cost-optimal design of a simplified, highly renewable pan-European electricity system. Energy 83, 658–668 (2015).

    Article  Google Scholar 

  27. 27

    Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114, 813–822 (2012).

    Article  Google Scholar 

  28. 28

    Zappa, G., Hawcroft, M. K., Shaffrey, L., Black, E. & Brayshaw, D. J. Extratropical cyclones and the projected decline of winter Mediterranean precipitation in the CMIP5 models. Clim. Dynam. 45, 1727–1738 (2015).

    Article  Google Scholar 

  29. 29

    Tobin, I. et al. Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections. Climatic Change 128, 99–112 (2015).

    Article  Google Scholar 

  30. 30

    Hdidouan, D. & Staffell, I. The impact of climate change on the levelised cost of wind energy. Renew. Energy 101, 575–592 (2017).

    Article  Google Scholar 

  31. 31

    UCAR/NCAR/CISL/VETS, The NCAR Command Language (v.6.2.1). UCAR/NACAR/Computational Information Systems Laboratory/Visualization and Enabling Technologies Section (2014); http://dx.doi.org/10.5065/D6WD3XH5

  32. 32

    Michelangeli, P.-A., Vautard, R. & Legras, B. Weather regimes: recurrence and quasi stationarity. J. Atmos. Sci. 52, 1237–1256 (1995).

    Article  Google Scholar 

  33. 33

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  34. 34

    Michel, C. & Rivière, G. The link between Rossby wave breakings and weather regime transitions. J. Atmos. Sci. 68, 1730–1748 (2011).

    Article  Google Scholar 

  35. 35

    Barnston, A. G. & Livezey, R. E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weath. Rev. 115, 1083–1126 (1987).

    Article  Google Scholar 

  36. 36

    Molod, A., Takacs, L., Suarez, M. & Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356 (2015).

    Article  Google Scholar 

  37. 37

    Heide, D., Greiner, M., von Bremen, L. & Hoffmann, C. Reduced storage and balancing needs in a fully renewable European power system with excess wind and solar power generation. Renew. Energy 36, 2515–2523 (2011).

    Article  Google Scholar 

  38. 38

    Ely, C. R., Brayshaw, D. J., Methven, J., Cox, J. & Pearce, O. Implications of the North Atlantic Oscillation for a UK–Norway renewable power system. Energy Policy 62, 1420–1427 (2013).

    Article  Google Scholar 

  39. 39

    Staffell, I. & Green, R. How does wind farm performance decline with age? Renew. Energy 66, 775–786 (2014).

    Article  Google Scholar 

  40. 40

    All Photovoltaic Barometers EurObserv’ER (EurObserv’ER, 2015); http://www.eurobserv-er.org/category/all-photovoltaic-barometers

  41. 41

    BP statistical review of world energy June 2015 (BP, 2015); http://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2015/bp-statistical-review-of-world-energy-2015-full-report.pdf

  42. 42

    Global Energy CO2 Data (Enerdata, 2016); http://www.enerdata.net/enerdatauk/knowledge/subscriptions/database/energy-market-data-and-co2-emissions-data.php

  43. 43

    Boßmann, T. & Staffell, I. The shape of future electricity demand: exploring load curves in 2050s Germany and Britain. Energy 90, 1317–1333 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

C.M.G. acknowledges funding from the Swiss National Science Foundation (SNSF) via grant PZ00P2_148177/1, R.B. from AXPO Trading AG, S.P. from the European Research Council via grant StG 2012-313553, and I.S. from the Engineering and Physical Sciences Research Council via grant EP/N005996/1. Data analysis and visualization were performed using the NCAR Command Language31.

Author information

Affiliations

Authors

Contributions

C.M.G. led the study, provided the weather regime classification and plotted the data. C.M.G. and S.P. carried out the bulk of the writing. R.B., S.P. and I.S. processed the data. H.W. initiated the collaboration of C.M.G. and R.B. and early links with the ETH Climate Policy Group. All authors contributed equally to editing and discussing the manuscript.

Corresponding authors

Correspondence to Christian M. Grams or Heini Wernli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6013 kb)

Supplementary Information

Supplementary Information (ZIP 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grams, C., Beerli, R., Pfenninger, S. et al. Balancing Europe’s wind-power output through spatial deployment informed by weather regimes. Nature Clim Change 7, 557–562 (2017). https://doi.org/10.1038/nclimate3338

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing