Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Localized rapid warming of West Antarctic subsurface waters by remote winds


The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Annual mean model response to East Antarctic poleward intensifying winds.
Figure 2: Antarctic Peninsula shelf response to East Antarctic poleward intensifying winds.
Figure 3: Hovmöller and time-series plots of Antarctic coastal ocean response to East Antarctic poleward intensifying wind forcing.
Figure 4: Across-shelf transects of western side of peninsula response to East Antarctic wind perturbation.
Figure 5: Schematic of the warming response of West Antarctic Peninsula waters to East Antarctic wind perturbation.


  1. 1

    Hay, C., Morrow, E., Kopp, R. & Mitrovica, J. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481–484 (2015).

    CAS  Article  Google Scholar 

  2. 2

    Hock, R., de Woul, M., Radic, V. & Dyurgerov, M. Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution. Geophys. Res. Lett. 36, L07501 (2009).

    Article  Google Scholar 

  3. 3

    Harig, C. & Simon, F. Accelerated West Antarctic ice mass loss continues to outpace Antarctic gains. Earth Planet. Sci. Lett. 415, 134–141 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Li, X., Rignot, E., Morlighem, M., Mouginot, J. & Scheuchl, B. Grounding line retreat of Totten Glacier East Antarctica. 1996–2013. Geophys. Res. Lett. 42, 8049–8056 (2015).

    Article  Google Scholar 

  5. 5

    Rignot, E. & Jacobs, S. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296, 2020–2023 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Rignot, E., Jacobs, S., Mouginot, J. & Scheule, B. Ice-shelf melting around Antarctica. Science 341, 266–270 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Schmidtko, S., Heywood, K., Thompson, A. & Aoki, S. Multidecadal warming of Antarctic waters. Science 346, 1227–1231 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Church, J. A. et al. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  9. 9

    Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin. West Antarctica. Science 344, 735–738 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  11. 11

    DeConto, R. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    CAS  Article  Google Scholar 

  12. 12

    Jacobs, S. S. On the nature and significance of the Antarctic Slope Front. Mar. Chem. 35, 9–24 (1991).

    Article  Google Scholar 

  13. 13

    Rignot, E. et al. Recent Antarctic ice mass loss from radar interferometry and regional climate modeling. Nat. Geosci. 1, 106–110 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Cook, A. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–285 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Thompson, D. W. & Solomon, S. Interpretation of recent Southern Hemisphere climate change. Science 296, 895–899 (2002).

    CAS  Article  Google Scholar 

  16. 16

    Martinson, D., Stammerjohn, S., Iannuzzi, R., Smith, R. & Vernet, M. Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep-Sea Res. II 55, 1964–1987 (2008).

    Article  Google Scholar 

  17. 17

    Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article  Google Scholar 

  18. 18

    Nøst, O. A. et al. Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea. J. Geophys. Res. 116, C11014 (2011).

    Article  Google Scholar 

  19. 19

    Stewart, A. & Thompson, A. Connecting Antarctic cross-slope exchange with Southern Ocean overturning. J. Phys. Oceanogr. 43, 1453–1471 (2013).

    Article  Google Scholar 

  20. 20

    Flexas, M. et al. Role of tides on the formation of the Antarctic Slope Front at the Weddell-Scotia Confluence. J. Geophys. Res. 120, 3658–3680 (2015).

    Article  Google Scholar 

  21. 21

    Zheng, F., Li, J., Clark, R. & Nnamchi, H. Simulation and projection of the Southern Hemisphere Annular Mode in CMIP5 models. J. Clim. 26, 9860–9879 (2013).

    Article  Google Scholar 

  22. 22

    Rhines, P. B. Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn. 1, 273–302 (1970).

    Article  Google Scholar 

  23. 23

    Rhines, P. & Bretherton, F. Topographic Rossby waves in a rough-bottomed ocean. J. Fluid Mech. 61, 583–607 (1973).

    Article  Google Scholar 

  24. 24

    Wang, D. & Mooers, C. Coastal-trapped waves in a continuously stratified ocean. J. Phys. Oceanogr. 6, 853–856 (1976).

    Article  Google Scholar 

  25. 25

    Hallberg, R. Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects. Ocean Modell. 72, 92–103 (2013).

    Article  Google Scholar 

  26. 26

    Chelton, D. et al. Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr. 28, 433–460 (1998).

    Article  Google Scholar 

  27. 27

    Schwab, D. J. & Beletsky, D. Propagation of Kelvin waves along irregular coastlines in finite-difference models. Adv. Water Resour. 22, 239–245 (1998).

    Article  Google Scholar 

  28. 28

    Kusahara, K. & Ohshima, K. Kelvin waves around Antarctica. J. Phys. Oceanogr. 44, 2909–2920 (2014).

    Article  Google Scholar 

  29. 29

    Mazloff, M. R., Heimbach, P. & Wunsch, C. An eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr. 40, 880–899 (2010).

    Article  Google Scholar 

  30. 30

    Moffat, C., Owens, B. & Beardsley, R. On the characteristics of Circumpolar Deep Water intrusions to the west Antarctic Peninsula shelf. J. Geophys. Res. 114, C05017 (2009).

    Article  Google Scholar 

  31. 31

    Chipman, D. W. et al. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (Oak Ridge National Laboratory, US Department of Energy, 1997);

  32. 32

    MacCready, P. & Rhines, P. B. Buoyant inhibition of Ekman transport on a slope and its effect on stratified spin-up. J. Fluid Mech. 223, 631–666 (1991).

    Article  Google Scholar 

  33. 33

    Wåhlin, A. et al. Some implications of Ekman layer dynamics for cross-shelf exchange in the Amundsen Sea. J. Phys. Oceanogr. 42, 1461–1474 (2012).

    Article  Google Scholar 

  34. 34

    Hughes et al. Wind-driven transport fluctuations through Drake Passage: a southern mode. J. Phys. Ocean. 29, 1971–1992 (1999).

    Article  Google Scholar 

  35. 35

    Karoly, D. J. Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 2, 1239–1252 (1989).

    Article  Google Scholar 

  36. 36

    Jenkins et al. Decadal ocean forcing and Antarctic Ice Sheet response: lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

    Article  Google Scholar 

  37. 37

    Mathiot, P. et al. Sensitivity of coastal polynyas and high salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dynam. 62, 701–723 (2012).

    Article  Google Scholar 

  38. 38

    Dinniman, S., Klinck, J. & Smith, W. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II 58, 1508–1523 (2011).

    CAS  Article  Google Scholar 

  39. 39

    Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Large, W. G. & Yeager, S. The global climatology of an inter-annually varying air-sea flux data set. Clim. Dynam. 33, 341–364 (2009).

    Article  Google Scholar 

  41. 41

    Dong, J., Speer, K. & Jullion, L. The Antarctic slope current near 30° E. Geophys. Res. Lett. 121, 1051–1062 (2016).

    Article  Google Scholar 

  42. 42

    Chavanne, C. P., Heywood, K., Nicholls, K. & Fer, I. Observations of the Antarctic Slope Undercurrent in the southeastern Weddell Sea. Geophys. Res. Lett. 37, L13601 (2010).

    Google Scholar 

  43. 43

    Griffies, S. M. et al. Impacts on ocean heat from transient mesoscale eddies in a hierarchy of climate models. J. Clim. 28, 952–977 (2015).

    Article  Google Scholar 

  44. 44

    Delworth, T. L. et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25, 2755–2781 (2012).

    Article  Google Scholar 

  45. 45

    Stewart, K. et al. Vertical resolution of baroclinic modes in global ocean models. Ocean Model. 113, 50–65 (2017).

    Article  Google Scholar 

  46. 46

    Shchepetkin, A. & McWilliams, J. The regional oceanic modeling system (ROMS): a split-explicit, free surface, topography following-coordinate oceanic model. Ocean Model. 9, 347–401.

    Article  Google Scholar 

Download references


This research was undertaken on the National Computational Infrastructure (NCI) in Canberra, Australia, which is supported by the Australian Commonwealth Government. Thanks to S. Ramsden and the NCI Vizlab for helping with the schematic in Fig. 5. Thanks to NOAA/GFDL for helping with model developments. Thanks to N. Jourdain for providing Supplementary Fig. 1 and helpful comments. Thanks to E. Bergkamp for investigating baroclinic modes in idealized simulations and to O. Saenko, J. Le Sommer, A. Stewart, J. Fyke, R. Hallberg, C. Dufour, G. Marques and P. Goddard for helpful comments. P.S. was supported by an Australian Research Council (ARC) DECRA Fellowship DE150100223, A.M.H. by an ARC Future Fellowship FT120100842 and M.H.E. by an ARC Laureate Fellowship FL100100214 and R.M.H. by an ARC Discovery Project DP150101331.

Author information




P.S. conceived the study, conducted the global ocean modelling and wrote the initial draft of the paper. R.M.H. performed the single-layer, shallow-water modelling. P.S. and R.M.H. analysed the model data. All authors contributed to interpreting the results, discussion of the associated dynamics, and refinement of the paper.

Corresponding author

Correspondence to Paul Spence.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6952 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spence, P., Holmes, R., Hogg, A. et al. Localized rapid warming of West Antarctic subsurface waters by remote winds. Nature Clim Change 7, 595–603 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing