Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Limited contribution of permafrost carbon to methane release from thawing peatlands

Subjects

Abstract

Models predict that thaw of permafrost soils at northern high latitudes will release tens of billions of tonnes of carbon (C) to the atmosphere by 2100 (refs 1,2,3). The effect on the Earth’s climate depends strongly on the proportion of this C that is released as the more powerful greenhouse gas methane (CH4), rather than carbon dioxide (CO2) (refs 1,4); even if CH4 emissions represent just 2% of the C release, they would contribute approximately one-quarter of the climate forcing5. In northern peatlands, thaw of ice-rich permafrost causes surface subsidence (thermokarst) and water-logging6, exposing substantial stores (tens of kilograms of C per square meter, ref. 7) of previously frozen organic matter to anaerobic conditions, and generating ideal conditions for permafrost-derived CH4 release. Here we show that, contrary to expectations, although substantial CH4 fluxes (>20 g CH4 m−2 yr−1) were recorded from thawing peatlands in northern Canada, only a small amount was derived from previously frozen C (<2 g CH4 m−2 yr−1). Instead, fluxes were driven by anaerobic decomposition of recent C inputs. We conclude that thaw-induced changes in surface wetness and wetland area, rather than the anaerobic decomposition of previously frozen C, may determine the effect of permafrost thaw on CH4 emissions from northern peatlands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the site-specific sampling designs.
Figure 2: Seasonal CH4 fluxes in the collapse wetlands.
Figure 3: Mean 14C content of CH4 collected from full-profile collars, near-surface collars and the probes located 40 cm below the moss/sedge peat and plateau peat transitions in the different thermokarst wetlands.
Figure 4: Sensitivity analysis to estimate the contribution of previously frozen C to surface CH4 fluxes.

Similar content being viewed by others

References

  1. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6, 465–570 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

    Article  Google Scholar 

  3. Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Phil. Trans. R. Soc. A. 373, 20140423 (2015).

    Article  Google Scholar 

  4. Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  5. Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119, 359–374 (2013).

    Article  CAS  Google Scholar 

  6. Turetsky, M. R., Wieder, R. K., Vitt, D. H., Evans, R. J. & Scott, K. D. The disappearance of relict permafrost in boreal north America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).

    Article  Google Scholar 

  7. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  8. Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012).

    Article  Google Scholar 

  9. Schadel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014).

    Article  Google Scholar 

  10. Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep. 5, 17951 (2015).

    Article  CAS  Google Scholar 

  11. McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).

    Article  Google Scholar 

  12. Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. J. Geophys. Res. 121, 78–94 (2016).

    Article  CAS  Google Scholar 

  13. Walter Anthony, K. M. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    Article  CAS  Google Scholar 

  14. Miao, Y. et al. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences 9, 4455–4464 (2012).

    Article  CAS  Google Scholar 

  15. Wickland, K. P., Striegl, R. G., Neff, J. C. & Sachs, T. Effects of permafrost melting on CO2 and CH4 exchange of a poorly drained black spruce lowland. J. Geophys. Res. 111, G02011 (2006).

    Article  Google Scholar 

  16. Gao, X. et al. Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environ. Res. Lett. 8, 035014 (2013).

    Article  Google Scholar 

  17. Garnett, M. H., Hardie, S. M. L. & Murray, C. Radiocarbon analysis of methane emitted from the surface of a raised peat bog. Soil Biol. Biochem. 50, 158–163 (2012).

    Article  CAS  Google Scholar 

  18. Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L. & Pfeiffer, E. M. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. J. Geophys. Res. 120, 2525–2541 (2015).

    Article  CAS  Google Scholar 

  19. Johnston, C. E. et al. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence. Environ. Res. Lett. 9, 085004 (2014).

    Article  Google Scholar 

  20. Levin, I., Kromer, B. & Hammer, S. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65, 20092 (2013).

    Article  Google Scholar 

  21. Treat, C. C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob. Change Biol. 21, 2787–2803 (2015).

    Article  Google Scholar 

  22. Freeman, C., Ostle, N. & Kang, H. An enzymic ‘latch’ on a global carbon store—a shortage of oxygen locks up carbon in peatlands by restraining a single enzyme. Nature 409, 149 (2001).

    Article  CAS  Google Scholar 

  23. Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).

    Article  CAS  Google Scholar 

  24. Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).

    Article  Google Scholar 

  25. Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014).

    Article  Google Scholar 

  26. Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429 (2005).

    Article  CAS  Google Scholar 

  27. Watts, J. D., Kimball, J. S., Bartsch, A. & McDonald, K. C. Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions. Environ. Res. Lett. 9, 075001 (2014).

    Article  Google Scholar 

  28. Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).

    Article  Google Scholar 

  29. Fraser, R. H. et al. Detecting landscape changes in high latitude environments using landsat trend analysis: 1. Visualization. Remote Sens. 6, 11533–11557 (2014).

    Article  Google Scholar 

  30. Hartley, I. P. et al. Quantifying landscape-level methane fluxes in subarctic Finland using a multiscale approach. Glob. Change Biol. 21, 3712–3725 (2015).

    Article  Google Scholar 

  31. Canadian Climate Normals (Government of Canada, accessed 25 January 2017); http://climate.weather.gc.ca/climate_normals

  32. Lewkowicz, A. G., Etzelmuller, B. & Smith, S. L. Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, Southern Yukon, Canada. Permafrost Periglac. 22, 320–342 (2011).

    Article  Google Scholar 

  33. Clague, J. J., Evans, S. G., Rampton, V. N. & Woodsworth, G. J. Improved age estimates for the white-river and bridge-river tephras, western Canada. Can. J. Earth Sci. 32, 1172–1179 (1995).

    Article  Google Scholar 

  34. Morse, P. D., Wolfe, S. A., Kokelj, S. V. & Gaanderse, A. J. R. The occurrence and thermal disequilibrium state of permafrost in forest ecotopes of the Great Slave Region, Northwest Territories, Canada. Permafrost Periglac. 27, 145–162 (2016).

    Article  Google Scholar 

  35. Wolfe, S. A. & Morse, P. D. Lithalsa formation and holocene lake-level recession, Great Slave Lowland, Northwest Territories. Permafrost Periglac. http://dx.doi.org/10.1002/ppp.1901 (2017).

  36. Livingston, G. P. & Hutchinson, G. L. in Biogenic Trace Gases: Measuring Emissions From Soil and Water (eds Matson, P. A. & Harriss, R. C.) 14–51 (Blackwell Publishing, 1995).

    Google Scholar 

  37. Myers-Smith, I. H. et al. Wetland succession in a permafrost collapse: interactions between fire and thermokarst. Biogeosciences 5, 1273–1286 (2008).

    Article  CAS  Google Scholar 

  38. Garnett, M. H., Gulliver, P. & Billett, M. F. A rapid method to collect methane from peatland streams for radiocarbon analysis. Ecohydrology 9, 113–121 (2016).

    Article  CAS  Google Scholar 

  39. Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Rowland, A. P. & Ostle, N. J. Carbon dioxide capture using a zeolite molecular sieve sampling system for isotopic studies (13C and 14C) of respiration. Radiocarbon 47, 441–451 (2005).

    Article  CAS  Google Scholar 

  40. Stuiver, M. & Polach, H. A. Reporting of 14C data—discussion. Radiocarbon 19, 355–363 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank C. Burn for providing the permafrost coring equipment that was used in Teslin and R. Sagar for help with the late-season CH4 flux measurements in Teslin. We are grateful to the Yukon College and Aurora Geosciences Ltd for logistical support in Teslin and Yellowknife, respectively, and would also like to acknowledge U. Skiba at CEH Edinburgh for the gas chromatography CH4 analyses. This work was funded by the UK Natural Environment Research Council (NERC) and Department of Energy and Climate Change (DECC) through grants NE/K000179/1 to I.P.H., NE/K00025X/1 to G.K.P., NE/K000241/1 to J.B.M. and NE/K000292/1 to M.W., and a University of Sheffield Righ Foundation Studentship to R.T.

Author information

Authors and Affiliations

Authors

Contributions

I.P.H., D.J.C., and C.E.-A. designed the study; M.D.A.C. led the CH4 flux measurements with the support of C.E.-A., J.P.F. and R.T. and carried out the sampling and initial processing of the CH4 samples under the supervision of M.H.G.; site selection and set-up was carried out by A.G.L., S.A.W., S.V.K., I.P.H., C.E.-A., D.J.C., J.B.M., G.K.P., A.T. and M.W., who also led the overall project. The manuscript was drafted by M.D.A.C., C.E.-A. and I.P.H. and all authors contributed to the final version.

Corresponding author

Correspondence to Iain P. Hartley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooper, M., Estop-Aragonés, C., Fisher, J. et al. Limited contribution of permafrost carbon to methane release from thawing peatlands. Nature Clim Change 7, 507–511 (2017). https://doi.org/10.1038/nclimate3328

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing