Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate mitigation from vegetation biophysical feedbacks during the past three decades

Abstract

The surface air temperature response to vegetation changes has been studied for the extreme case of land-cover change1,2,3,4,5; yet, it has never been quantified for the slow but persistent increase in leaf area index (LAI) observed over the past 30 years (Earth greening)6,7. Here we isolate the fingerprint of increasing LAI on surface air temperature using a coupled land–atmosphere global climate model prescribed with satellite LAI observations. We find that the global greening has slowed down the rise in global land-surface air temperature by 0.09 ± 0.02 °C since 1982. This net cooling effect is the sum of cooling from increased evapotranspiration (70%), changed atmospheric circulation (44%), decreased shortwave transmissivity (21%), and warming from increased longwave air emissivity (−29%) and decreased albedo (−6%). The global cooling originated from the regions where LAI has increased, including boreal Eurasia, Europe, India, northwest Amazonia, and the Sahel. Increasing LAI did not, however, significantly change surface air temperature in eastern North America and East Asia, where the effects of large-scale atmospheric circulation changes mask local vegetation feedbacks. Overall, the sum of biophysical feedbacks related to the greening of the Earth mitigated 12% of global land-surface warming for the past 30 years.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ΔLAI-induced trends in annual average land-surface air temperature (Ta).
Figure 2: Patterns of LAI trend and ΔLAI-induced trends in land-surface air temperature (Ta).
Figure 3: Sensitivities of evapotranspiration (E) and surface albedo (α) to LAI and ΔLAI-induced trends in land-surface air temperature (Ta) calibrated with the observed sensitivities.

References

  1. 1

    Myhre, G. D. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. 2

    Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2014).

    Article  Google Scholar 

  4. 4

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Lee, X. H. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).

    Google Scholar 

  8. 8

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Mahowald, N. et al. Leaf area index in Earth System Models: evaluation and projections. Earth Syst. Dyn. Discuss. 6, 761–818 (2015).

    Article  Google Scholar 

  10. 10

    Graven, H. D. et al. Enhanced seasonal exchange of CO2 by Northern ecosystems since 1960. Science 341, 1085–1089 (2013).

    CAS  Article  Google Scholar 

  11. 11

    Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 1456–1457 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Shukla, J. & Mintz, Y. Influence of land-surface evapotranspiration on the Earth’s climate. Science 215, 1498–1501 (1982).

    CAS  Article  Google Scholar 

  13. 13

    Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).

    Article  Google Scholar 

  16. 16

    Kala, J. et al. Influence of leaf area index prescriptions on simulations of heat, moisture, and carbon fluxes. J. Hydrometeorol. 15, 489–503 (2013).

    Article  Google Scholar 

  17. 17

    Wang, J. et al. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl Acad. Sci. USA 106, 3670–3674 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Swann, A. L. S., Fung, I. Y. & Chiang, J. C. H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Marti, O. et al. Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim. Dyn. 34, 1–26 (2010).

    Article  Google Scholar 

  20. 20

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  21. 21

    Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 8, 102–106 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Chahine, M. T. The hydrological cycle and its influence on climate. Nature 359, 373–380 (1992).

    Article  Google Scholar 

  23. 23

    Levis, S., Foley, J. & Pollard, D. Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys. Res. Lett. 26, 747–750 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  26. 26

    Small, J. et al. A new synoptic scale resolving global climate simulation using the Community Earth System model. J. Adv. Model. Earth Syst. 6, 1065–1094 (2014).

    Article  Google Scholar 

  27. 27

    Bi, D. et al. The ACCESS coupled model: description, control climate and evaluation. Aust. Meteorol. Oceanogr. J. 63, 41–64 (2013).

    Article  Google Scholar 

  28. 28

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Lyndon, D. E. et al. Changing water availability during the African maize-growing season, 1979–2010. Environ. Res. Lett. 9, 075005 (2014).

    Article  Google Scholar 

  31. 31

    Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  Article  Google Scholar 

  32. 32

    He, J. & Soden, B. J. The impact of SST biases on projections of anthropogenic climate change: a greater role for atmosphere-only models? Geophys. Res. Lett. 43, 7745–7750 (2016).

    Article  Google Scholar 

  33. 33

    Li, Z. X. Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J. Clim. 12, 986–1001 (1999).

    Article  Google Scholar 

  34. 34

    Hourdin, F. et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006).

    Article  Google Scholar 

  35. 35

    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Article  Google Scholar 

  36. 36

    Mueller, B. & Seneviratne, S. I. Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett. 41, 128–134 (2014).

    CAS  Article  Google Scholar 

  37. 37

    Rebel, K. T. et al. A global analysis of soil moisture derived from satellite observations and a land surface model. Hydrol. Earth Syst. Sci. 16, 833–847 (2012).

    Article  Google Scholar 

  38. 38

    Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  Google Scholar 

  39. 39

    Lombardozzi, D., Bonan, G. B. & Nychka, D. W. The emerging anthropogenic signal in land-atmosphere carbon-cycle coupling. Nat. Clim. Change 4, 796–800 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Compo, G. & Sardeshmukh, P. Oceanic influences on recent continental warming. Clim. Dyn. 32, 333–342 (2009).

    Article  Google Scholar 

  41. 41

    Wang, K. & Liang, S. Global atmospheric downward longwave radiation over land surface under all-sky conditions from 1973 to 2008. J. Geophys. Res. 114, D19101 (2009).

    Article  Google Scholar 

  42. 42

    Zhou, L. et al. Asymmetric response of maximum and minimum temperatures to soil emissivity change over the Northern African Sahel in a GCM. Geophys. Res. Lett. 35, L05402 (2008).

    Google Scholar 

  43. 43

    Zeng, Z. et al. A worldwide analysis of spatiotemporal changes in water balance based evapotranspiration from 1982 to 2009. J. Geophys. Res. 119, 1186–1202 (2014).

    Article  Google Scholar 

  44. 44

    Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Zhang, K., Kimball, J. S., Nemani, R. R. & Running, S. W. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Wat. Resour. Res. 46, W09522 (2010).

    Google Scholar 

  46. 46

    Liu, Q. et al. Preliminary evaluation of the long-term GLASS albedo product. Int. J. Digit. Earth 6, 69–95 (2013).

    Article  Google Scholar 

  47. 47

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  48. 48

    Brodzik, M. & Armstrong, R. Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent. Version 4 (NASA DAAC at the National Snow and Ice Data Center, 2013).

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41530528 and 41561134016), National Youth Top-notch Talent Support Program in China, and the 111 Project (B14001). We thank the National Supercomputer Center in Tianjin, China (NSCC-TJ), the National Computer Center IDRIS of CNRS in France, the Commonwealth Scientific and Industrial Research Organisation in Australia, and the Oak Ridge National Laboratory in the United States for providing computing resources. J.M. is supported by the Biogeochemistry-Climate Feedbacks Scientific Focus Area project and the project under contract of DE-SC0012534 funded through the Regional and Global Climate Modeling Program, and the Terrestrial Ecosystem Science Scientific Focus Area project funded through the Terrestrial Ecosystem Science Program in the Climate and Environmental Sciences Division (CESD) of the Biological and Environmental Research (BER) Program in the US Department of Energy Office of Science. X.S. is supported by the Accelerated Climate Modeling for Energy project funded through the Earth System Modeling Program in the CESD of the BER Program in the US Department of Energy Office of Science. This research used the resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contact No. DE-AC05-00OR22725.

Author information

Affiliations

Authors

Contributions

S.Piao, L.Z.X.L. and Z.Z. designed the research; Z.Z., L.Z.X.L., Y.L., X.S. and J.M. performed the simulations; Z.Z. performed analysis; Z.Z. and S.Piao wrote the draft; and all the authors contributed to the interpretation of the results and the writing of the paper.

Corresponding author

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3473 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, Z., Piao, S., Li, L. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Clim Change 7, 432–436 (2017). https://doi.org/10.1038/nclimate3299

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing