Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Amplification of wildfire area burnt by hydrological drought in the humid tropics


Borneo’s diverse ecosystems, which are typical humid tropical conditions, are deteriorating rapidly, as the area is experiencing recurrent large-scale wildfires, affecting atmospheric composition1,2,3,4 and influencing regional climate processes5,6. Studies suggest that climate-driven drought regulates wildfires2,7,8,9, but these overlook subsurface processes leading to hydrological drought, an important driver. Here, we show that models which include hydrological processes better predict area burnt than those solely based on climate data. We report that the Borneo landscape10 has experienced a substantial hydrological drying trend since the early twentieth century, leading to progressive tree mortality, more severe than in other tropical regions11. This has caused massive wildfires in lowland Borneo during the past two decades, which we show are clustered in years with large areas of hydrological drought coinciding with strong El Niño events. Statistical modelling evidence shows amplifying wildfires and greater area burnt in response to El Niño/Southern Oscillation (ENSO) strength, when hydrology is considered. These results highlight the importance of considering hydrological drought for wildfire prediction, and we recommend that hydrology should be considered in future studies of the impact of projected ENSO strength, including effects on tropical ecosystems, and biodiversity conservation. 

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mechanisms of the drought–fire link are explained through the dynamics of the groundwater table fluctuation.
Figure 2: Area burnt by wildfires in Borneo during drought and non-drought years for the period 1996–2015.
Figure 3: Predicted area burnt for various El Niño strengths (see Methods) using two model ensembles (CLIM and H-CLIM).

Similar content being viewed by others


  1. Thompson, A. M. et al. Tropical tropospheric ozone and biomass burning. Science 291, 2128–2132 (2001).

    Article  CAS  Google Scholar 

  2. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    Article  CAS  Google Scholar 

  3. Novelli, P. C. et al. Reanalysis of tropospheric CO trends: effects of the 1997–1998 wildfires. J. Geophys. Res. 108, 4464 (2003).

    Article  Google Scholar 

  4. Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).

    CAS  Google Scholar 

  5. Hoffmann, W. A., Schroeder, W. & Jackson, R. B. Regional feedbacks among fire, climate, and tropical deforestation. J. Geophys. Res. 108, 4721 (2003).

    Article  Google Scholar 

  6. Van der Molen, M. K., Dolman, A. J., Waterloo, M. J. & Bruijnzeel, L. A. Climate is affected more by maritime than by continental land use change: a multiple scale analysis. Glob. Planet. Change 54, 128–149 (2006).

    Article  Google Scholar 

  7. Van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N. & Dolman, A. J. Climate controls on the variability of fires in the tropics and subtropics. Glob. Biogeochem. Cycles 22, GB3028 (2008).

    Article  Google Scholar 

  8. Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    Article  CAS  Google Scholar 

  9. Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).

    Article  CAS  Google Scholar 

  10. Kier, G. et al. Global patterns of plant diversity and floristic knowledge. J. Biogeogr. 32, 1107–1116 (2005).

    Article  Google Scholar 

  11. Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).

    Article  Google Scholar 

  12. Beaman, J. Mount Kinabalu: hotspot of plant diversity in Borneo. Biol. Skr. 55, 103–127 (2005).

    Google Scholar 

  13. Dai, A. G. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

    Article  Google Scholar 

  14. Fernandes, K. et al. Heightened fire probability in Indonesia in non-drought conditions: the effect of increasing temperatures. Environ. Res. Lett. (2017).

  15. Marlier, M. E. et al. El Niño and health risks from landscape fire emissions in southeast Asia. Nat. Clim. Change 3, 131–136 (2013).

    Article  CAS  Google Scholar 

  16. Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O. & Limin, S. H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73, 212–224 (2008).

    Article  Google Scholar 

  17. Hoscilo, A., Page, S. E., Tansey, K. J. & Rieley, J. O. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. Int. J. Wildland Fire 20, 578–588 (2011).

    Article  Google Scholar 

  18. Taufik, M., Setiawan, B. I. & Van Lanen, H. A. J. Modification of a fire drought index for tropical wetland ecosystems by including water table depth. Agric. For. Meteorol. 203, 1–10 (2015).

    Article  Google Scholar 

  19. Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    Article  CAS  Google Scholar 

  20. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  21. Van Loon, A. F. & Van Lanen, H. A. J. A process-based typology of hydrological drought. Hydrol. Earth Syst. Sci. 16, 1915–1946 (2012).

    Article  Google Scholar 

  22. Giglio, L., Randerson, J. T. & Van der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. 118, 317–328 (2013).

    Article  Google Scholar 

  23. Yang, Y., Uddstrom, M., Pearce, G. & Revell, M. Reformulation of the drought code in the Canadian fire weather index system implemented in New Zealand. J. Appl. Meteorol. Climatol. 54, 1523–1537 (2015).

    Article  Google Scholar 

  24. Cleveland, W. S. & Devlin, S. J. Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

    Article  Google Scholar 

  25. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  26. Field, R. D. et al. Development of a global fire weather database. Nat. Hazards Earth Syst. Sci. 15, 1407–1423 (2015).

    Article  Google Scholar 

  27. Moriasi, D. N. et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 50, 885–900 (2007).

    Article  Google Scholar 

  28. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 5, 1–6 (2014).

    Google Scholar 

  29. Cai, W. et al. ENSO and greenhouse warming. Nat. Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  30. Van Lanen, H. A. J., Wanders, N., Tallaksen, L. M. & Van Loon, A. F. Hydrological drought across the world: impact of climate and physical catchment structure. Hydrol. Earth Syst. Sci. 17, 1715–1732 (2013).

    Article  Google Scholar 

  31. Wanders, N. & Van Lanen, H. A. J. Future discharge drought across climate regions around the world modelled with a synthetic hydrological modelling approach forced by three general circulation models. Nat. Hazards Earth Syst. Sci. 15, 487–504 (2015).

    Article  Google Scholar 

  32. Hoekman, D. H., Vissers, M. A. M. & Wielaard, N. PALSAR wide-area mapping of Borneo: methodology and map validation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 605–617 (2010).

    Article  Google Scholar 

  33. Koh, L. P., Miettinen, J., Liew, S. C. & Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Natl Acad. Sci. USA 108, 5127–5132 (2011).

    Article  CAS  Google Scholar 

  34. Carlson, K. M. et al. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Change 3, 283–287 (2012).

    Article  Google Scholar 

  35. Langner, A., Miettinen, J. & Siegert, F. Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Change Biol. 13, 2329–2340 (2007).

    Article  Google Scholar 

  36. Tallaksen, L. M., Hisdal, H. & Van Lanen, H. A. J. Space-time modelling of catchment scale drought characteristics. J. Hydrol. 375, 363–372 (2009).

    Article  Google Scholar 

  37. Wooster, M. J., Perry, G. L. W. & Zoumas, A. Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9, 317–340 (2012).

    Article  Google Scholar 

  38. Walsh, R. P. D. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12, 385–407 (1996).

    Article  Google Scholar 

  39. Walsh, R. P. D. & Newbery, D. M. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Phil. Trans. R. Soc. Lond. B 354, 1869–1883 (1999).

    Article  CAS  Google Scholar 

  40. Newbery, D. M. & Lingenfelder, M. Resistance of a lowland rain forest to increasing drought intensity in Sabah, Borneo. J. Trop. Ecol. 20, 613–624 (2004).

    Article  Google Scholar 

  41. Gupta, H. V., Kling, H., Yilmaz, K. K. & Martinez, G. F. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J. Hydrol. 377, 80–91 (2009).

    Article  Google Scholar 

  42. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).

  43. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  44. Malingreau, J. P., Stephens, G. & Fellows, L. Remote sensing of forest fires: Kalimantan and North Borneo in 1982–83. Ambio 14, 314–321 (1985).

    Google Scholar 

Download references


This present study was completed with support of DIKTI Scholarship (contract no: 4115/E4.4/K/2013) and project SPIN-JRP-29 granted by Royal Netherlands Academy of Arts and Sciences (KNAW). It contributes to WIMEK-SENSE and UNESCO IHP-VIII programme FRIEND-Water. D.M.’s time is supported by USAID grant through SWAMP.

Author information

Authors and Affiliations



M.T. and H.A.J.V.L. conceived and implemented the research. M.T. and P.J.J.F.T. performed data analysis. M.T. and H.A.J.V.L. wrote the initial version of the paper. M.T. performed model output analysis and generated all figures. All authors contributed to interpreting results, discussion of the associated dynamics and improvement of this paper.

Corresponding author

Correspondence to Muh Taufik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2282 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taufik, M., Torfs, P., Uijlenhoet, R. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Clim Change 7, 428–431 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing