Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Drylands face potential threat under 2 °C global warming target

Abstract

The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels1,2,3. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2–1.3 °C) has been 20–40% higher than that over humid lands (0.8–1.0 °C), while anthropogenic CO2 emissions generated from drylands (230 Gt) have been only 30% of those generated from humid lands (750 Gt). For the twenty-first century, warming of 3.2–4.0 °C (2.4–2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating 44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that 38% of the world’s population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C; therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Temperature trends and historical CO2 emissions for drylands and humid lands.
Figure 2: The comparison of warming amplification over different regions based on CMIP5 and three observational data sets.
Figure 3: The thermodynamic mechanisms of dryland-enhanced warming.
Figure 4: Differences of climate change impact between the GMSW of 1.5 °C and 2.0 °C.

References

  1. 1

    Adoption of the Paris Agreement FCCC/CP/2015/L9/Rev.1 (UNFCCC, 2015).

  2. 2

    Knutti, R., Rogelj, J., Sedláček, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2015).

    Article  Google Scholar 

  3. 3

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    CAS  Article  Google Scholar 

  4. 4

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  5. 5

    Dai, A. Future warming patterns linked to today’s climate variability. Sci. Rep. 6, 19110 (2016).

    CAS  Google Scholar 

  6. 6

    Shukla, J. & Mintz, Y. Influence of land-surface evapotranspiration on the Earth’s climate. Science 215, 1498–1501 (1982).

    CAS  Article  Google Scholar 

  7. 7

    Wu, Z., Huang, N., Wallace, J., Smoliak, B. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dynam. 37, 759–773 (2011).

    Article  Google Scholar 

  8. 8

    Wallace, J. M. & Johanson, C. M. Simulated versus observed patterns of warming over the extratropical northern hemisphere continents during the cold season. Proc. Natl Acad. Sci. USA 109, 14337–14342 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Huang, J., Guan, X. & Ji, F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 12, 5391–5398 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

    Article  Google Scholar 

  11. 11

    Guan, X. et al. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over East Asia. Atmos. Chem. Phys. 15, 13777–13786 (2015).

    CAS  Article  Google Scholar 

  12. 12

    Safriel, U. Deserts and desertification: challenges but also opportunities. Land Degrad. Dev. 20, 353–366 (2009).

    Article  Google Scholar 

  13. 13

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 4, 485–498 (2012).

    Article  Google Scholar 

  14. 14

    Dai, A., Fyfe, J. C., Xie, S. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

    Article  Google Scholar 

  15. 15

    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).

    CAS  Article  Google Scholar 

  16. 16

    North, B. G. R., Kim, K. Y., Shen, S. P. & Hardin, W. W. Detection of forced climate signals. Part I: Filter theory. J. Clim. 8, 401–408 (1995).

    Article  Google Scholar 

  17. 17

    Yin, D., Roderick, M. L., Leech, G., Sun, F. & Huang, Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett. 41, 7891–7897 (2014).

    Article  Google Scholar 

  18. 18

    Foley, A. J., Costa, M. H., Delire, C., Ramankutty, N. & Snyder, P. Green surprise? How terrestrial ecpsystems could affect Earth’s climate. Front. Ecol. Environ. 1, 38–44 (2003).

    Google Scholar 

  19. 19

    Liu, Z., Notaro, M., Kutzbach, J. & Liu, N. Assessing global vegetation-climate feedbacks from observations. J. Clim. 19, 787–814 (2006).

    Article  Google Scholar 

  20. 20

    Neelin, J., Chou, C. & Su, H. Tropical drought regions in global warming and El Nino teleconnections. Geophys. Res. Lett. 30, 2275 (2003).

    Article  Google Scholar 

  21. 21

    Hartmann, D. L., Ockert-Bell, M. E. & Michelsen, M. L. The effect of cloud type on Earth’s energy balance: global analysis. J. Clim. 5, 1281–1304 (1992).

    Article  Google Scholar 

  22. 22

    Li, Z. et al. The long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 4, 888–894 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Fu, Q., Johanson, C. M., Wallace, J. M. & Reichler, T. Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312, 1179 (2006).

    CAS  Article  Google Scholar 

  24. 24

    Li, H., Dai, A., Zhou, T. & Lu, J. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim. Dynam. 34, 501–514 (2010).

    Article  Google Scholar 

  25. 25

    Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. Regional Climate Studies of China Vol. 1, 156–159 (Springer, 2008).

    Google Scholar 

  26. 26

    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

    Article  Google Scholar 

  27. 27

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 485–533 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  28. 28

    Wang, L., Yuan, X., Xie, Z., Wu, P. & Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 6, 30571 (2016).

    CAS  Article  Google Scholar 

  29. 29

    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article  Google Scholar 

  31. 31

    Hansen, J., Ruedy, R., Stao, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  32. 32

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  33. 33

    Dai, A. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change http://dx.doi.org/10.1007/s10584-016-1705-2 (2016).

  34. 34

    Chen, M. Y., Xie, P. P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

    Article  Google Scholar 

  35. 35

    Schneider, U. et al. GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data (Global Precipitation Climatology Centre, 2015); http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V7_050

    Google Scholar 

  36. 36

    Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 193, 120–145 (1948).

    CAS  Article  Google Scholar 

  37. 37

    Monteith, J. L. Evaporation and Environment 205–234 (Cambridge Univ. Press, 1965).

    Google Scholar 

  38. 38

    Andres, R. J., Boden, T. A. & Marland, G. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, 2016); http://dx.doi.org/10.3334/CDIAC/ffe.ndp058.2016

    Google Scholar 

  39. 39

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  40. 40

    Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article  Google Scholar 

  41. 41

    Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 3, 748–766 (2009).

    Article  Google Scholar 

  42. 42

    Ramanathan, V. et al. Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 243, 57–63 (1989).

    CAS  Article  Google Scholar 

  43. 43

    Stanfield, R. E. et al. Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part II: TOA radiation budget and CREs. J. Clim. 28, 1842–1864 (2015).

    Article  Google Scholar 

  44. 44

    Wielicki, B. A. et al. Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996).

    Article  Google Scholar 

  45. 45

    Sayer, A. M. et al. MODIS Collection 6 aerosol products: comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. 119, 13965–13989 (2014).

    CAS  Google Scholar 

  46. 46

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Hartman, J., Ebi, K., McConnell, K., Chan, N. & Weyant, J. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Glob. Change Hum. Health 3, 42–54 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Science Foundation of China (41521004), the China University Research Talents Recruitment Program (111 project, No. B13045) and the foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University. A.D. is supported by the US National Science Foundation (Grant #AGS–1353740), the US Department of Energy’s Office of Science (Award #DE–SC0012602), and the US National Oceanic and Atmospheric Administration (Award #NA15OAR4310086). The authors acknowledge the World Climate Research Programme’s (WCRP) Working Group on Coupled Modelling (WGCM), the Global Organization for Earth System Science Portals (GO-ESSP) for producing the CMIP5 model simulations and making them available for analysis. The authors also acknowledge NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for providing NOAA Merged Air Land and SST Anomalies data and GPCC precipitation data from their website at http://www.esrl.noaa.gov/psd.

Author information

Affiliations

Authors

Contributions

J.H. and H.Y. are first co-authors. J.H. designed the study and contributed to the ideas, interpretation and manuscript writing. H.Y. and A.D. contributed to the data analysis, interpretation and manuscript writing. H.Y. and Y.W. conducted the data processing. All of the authors discussed and reviewed the manuscript.

Corresponding author

Correspondence to Jianping Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7516 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, H., Dai, A. et al. Drylands face potential threat under 2 °C global warming target. Nature Clim Change 7, 417–422 (2017). https://doi.org/10.1038/nclimate3275

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing