Drylands face potential threat under 2 °C global warming target

Article metrics


The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels1,2,3. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2–1.3 °C) has been 20–40% higher than that over humid lands (0.8–1.0 °C), while anthropogenic CO2 emissions generated from drylands (230 Gt) have been only 30% of those generated from humid lands (750 Gt). For the twenty-first century, warming of 3.2–4.0 °C (2.4–2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating 44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that 38% of the world’s population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C; therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Temperature trends and historical CO2 emissions for drylands and humid lands.
Figure 2: The comparison of warming amplification over different regions based on CMIP5 and three observational data sets.
Figure 3: The thermodynamic mechanisms of dryland-enhanced warming.
Figure 4: Differences of climate change impact between the GMSW of 1.5 °C and 2.0 °C.


  1. 1

    Adoption of the Paris Agreement FCCC/CP/2015/L9/Rev.1 (UNFCCC, 2015).

  2. 2

    Knutti, R., Rogelj, J., Sedláček, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nat. Geosci. 9, 13–18 (2015).

  3. 3

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

  4. 4

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 159–254 (IPCC, Cambridge Univ. Press, 2013).

  5. 5

    Dai, A. Future warming patterns linked to today’s climate variability. Sci. Rep. 6, 19110 (2016).

  6. 6

    Shukla, J. & Mintz, Y. Influence of land-surface evapotranspiration on the Earth’s climate. Science 215, 1498–1501 (1982).

  7. 7

    Wu, Z., Huang, N., Wallace, J., Smoliak, B. & Chen, X. On the time-varying trend in global-mean surface temperature. Clim. Dynam. 37, 759–773 (2011).

  8. 8

    Wallace, J. M. & Johanson, C. M. Simulated versus observed patterns of warming over the extratropical northern hemisphere continents during the cold season. Proc. Natl Acad. Sci. USA 109, 14337–14342 (2012).

  9. 9

    Huang, J., Guan, X. & Ji, F. Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys. 12, 5391–5398 (2012).

  10. 10

    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).

  11. 11

    Guan, X. et al. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over East Asia. Atmos. Chem. Phys. 15, 13777–13786 (2015).

  12. 12

    Safriel, U. Deserts and desertification: challenges but also opportunities. Land Degrad. Dev. 20, 353–366 (2009).

  13. 13

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 4, 485–498 (2012).

  14. 14

    Dai, A., Fyfe, J. C., Xie, S. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

  15. 15

    Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).

  16. 16

    North, B. G. R., Kim, K. Y., Shen, S. P. & Hardin, W. W. Detection of forced climate signals. Part I: Filter theory. J. Clim. 8, 401–408 (1995).

  17. 17

    Yin, D., Roderick, M. L., Leech, G., Sun, F. & Huang, Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys. Res. Lett. 41, 7891–7897 (2014).

  18. 18

    Foley, A. J., Costa, M. H., Delire, C., Ramankutty, N. & Snyder, P. Green surprise? How terrestrial ecpsystems could affect Earth’s climate. Front. Ecol. Environ. 1, 38–44 (2003).

  19. 19

    Liu, Z., Notaro, M., Kutzbach, J. & Liu, N. Assessing global vegetation-climate feedbacks from observations. J. Clim. 19, 787–814 (2006).

  20. 20

    Neelin, J., Chou, C. & Su, H. Tropical drought regions in global warming and El Nino teleconnections. Geophys. Res. Lett. 30, 2275 (2003).

  21. 21

    Hartmann, D. L., Ockert-Bell, M. E. & Michelsen, M. L. The effect of cloud type on Earth’s energy balance: global analysis. J. Clim. 5, 1281–1304 (1992).

  22. 22

    Li, Z. et al. The long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat. Geosci. 4, 888–894 (2011).

  23. 23

    Fu, Q., Johanson, C. M., Wallace, J. M. & Reichler, T. Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312, 1179 (2006).

  24. 24

    Li, H., Dai, A., Zhou, T. & Lu, J. Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim. Dynam. 34, 501–514 (2010).

  25. 25

    Fu, C., Jiang, Z., Guan, Z., He, J. & Xu, Z. Regional Climate Studies of China Vol. 1, 156–159 (Springer, 2008).

  26. 26

    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

  27. 27

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 485–533 (IPCC, Cambridge Univ. Press, 2014).

  28. 28

    Wang, L., Yuan, X., Xie, Z., Wu, P. & Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 6, 30571 (2016).

  29. 29

    Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).

  30. 30

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

  31. 31

    Hansen, J., Ruedy, R., Stao, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

  32. 32

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).

  33. 33

    Dai, A. & Zhao, T. Uncertainties in historical changes and future projections of drought. Part I: estimates of historical drought changes. Climatic Change http://dx.doi.org/10.1007/s10584-016-1705-2 (2016).

  34. 34

    Chen, M. Y., Xie, P. P., Janowiak, J. E. & Arkin, P. A. Global land precipitation: a 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).

  35. 35

    Schneider, U. et al. GPCC Full Data Reanalysis Version 7.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data (Global Precipitation Climatology Centre, 2015); http://dx.doi.org/10.5676/DWD_GPCC/FD_M_V7_050

  36. 36

    Penman, H. L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. A 193, 120–145 (1948).

  37. 37

    Monteith, J. L. Evaporation and Environment 205–234 (Cambridge Univ. Press, 1965).

  38. 38

    Andres, R. J., Boden, T. A. & Marland, G. Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (Carbon dioxide information analysis center, Oak Ridge National Laboratory, US Department of Energy, 2016); http://dx.doi.org/10.3334/CDIAC/ffe.ndp058.2016

  39. 39

    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

  40. 40

    Rodell, M. et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

  41. 41

    Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 3, 748–766 (2009).

  42. 42

    Ramanathan, V. et al. Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 243, 57–63 (1989).

  43. 43

    Stanfield, R. E. et al. Assessment of NASA GISS CMIP5 and post-CMIP5 simulated clouds and TOA radiation budgets using satellite observations. Part II: TOA radiation budget and CREs. J. Clim. 28, 1842–1864 (2015).

  44. 44

    Wielicki, B. A. et al. Clouds and the Earth’s Radiant Energy System (CERES): an Earth observing system experiment. Bull. Am. Meteorol. Soc. 77, 853–868 (1996).

  45. 45

    Sayer, A. M. et al. MODIS Collection 6 aerosol products: comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. 119, 13965–13989 (2014).

  46. 46

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

  47. 47

    Hartman, J., Ebi, K., McConnell, K., Chan, N. & Weyant, J. Climate suitability for stable malaria transmission in Zimbabwe under different climate change scenarios. Glob. Change Hum. Health 3, 42–54 (2012).

Download references


This work was jointly supported by the National Science Foundation of China (41521004), the China University Research Talents Recruitment Program (111 project, No. B13045) and the foundation of Key Laboratory for Semi-Arid Climate Change of the Ministry of Education in Lanzhou University. A.D. is supported by the US National Science Foundation (Grant #AGS–1353740), the US Department of Energy’s Office of Science (Award #DE–SC0012602), and the US National Oceanic and Atmospheric Administration (Award #NA15OAR4310086). The authors acknowledge the World Climate Research Programme’s (WCRP) Working Group on Coupled Modelling (WGCM), the Global Organization for Earth System Science Portals (GO-ESSP) for producing the CMIP5 model simulations and making them available for analysis. The authors also acknowledge NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for providing NOAA Merged Air Land and SST Anomalies data and GPCC precipitation data from their website at http://www.esrl.noaa.gov/psd.

Author information

J.H. and H.Y. are first co-authors. J.H. designed the study and contributed to the ideas, interpretation and manuscript writing. H.Y. and A.D. contributed to the data analysis, interpretation and manuscript writing. H.Y. and Y.W. conducted the data processing. All of the authors discussed and reviewed the manuscript.

Correspondence to Jianping Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7516 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Yu, H., Dai, A. et al. Drylands face potential threat under 2 °C global warming target. Nature Clim Change 7, 417–422 (2017) doi:10.1038/nclimate3275

Download citation

Further reading