Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The subtle origins of surface-warming hiatuses

Abstract

During the first decade of the twenty-first century, the Earth’s surface warmed more slowly than climate models simulated1. This surface-warming hiatus is attributed by some studies to model errors in external forcing2,3,4, while others point to heat rearrangements in the ocean5,6,7,8,9,10 caused by internal variability, the timing of which cannot be predicted by the models1. However, observational analyses disagree about which ocean region is responsible11,12,13,14,15,16. Here we show that the hiatus could also have been caused by internal variability in the top-of-atmosphere energy imbalance. Energy budgeting for the ocean surface layer over a 100-member historical ensemble reveals that hiatuses are caused by energy-flux deviations as small as 0.08 W m−2, which can originate at the top of the atmosphere, in the ocean, or both. Budgeting with existing observations cannot constrain the origin of the recent hiatus, because the uncertainty in observations dwarfs the small flux deviations that could cause a hiatus. The sensitivity of these flux deviations to the observational dataset and to energy budget choices helps explain why previous studies conflict, and suggests that the origin of the recent hiatus may never be identified.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Distribution of 15-year trends in global mean surface temperature (GMST) in the 100-member ensemble.
Figure 2: Surface energy budgets.
Figure 3: Hiatuses and their origins in models and observations.

References

  1. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 741–866 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  2. Solomon, S. et al. The persistently variable ‘background’ stratospheric aerosol layer and global climate change. Science 333, 866–870 (2011).

    Article  CAS  Google Scholar 

  3. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci. 7, 185–189 (2014).

    Article  CAS  Google Scholar 

  4. Kopp, G. & Lean, J. L. A new, lower value of total solar irradiance: evidence and climate significance. Geophys. Res. Lett. 38, L01706 (2011).

    Article  Google Scholar 

  5. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  6. Meehl, G. A., Hu, A., Arblaster, J. M., Fasullo, J. & Trenberth, K. E. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation. J. Clim. 26, 7298–7310 (2013).

    Article  Google Scholar 

  7. Guemas, V., Doblas-Reyes, F. J., Andreu-Burillo, I. & Asif, M. Retrospective prediction of the global warming slowdown in the past decade. Nat. Clim. Change 3, 649–653 (2013).

    Article  Google Scholar 

  8. Watanabe, M. et al. Strengthening of ocean heat uptake efficiency associated with the recent climate hiatus. Geophys. Res. Lett. 40, 3175–3179 (2013).

    Article  Google Scholar 

  9. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  10. Katsman, C. A. & van Oldenborgh, G. J. Tracing the upper ocean’s ‘missing heat’. Geophys. Res. Lett. 38, L14610 (2011).

    Google Scholar 

  11. Drijfhout, S. S. et al. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 41, 7868–7874 (2014).

    Article  Google Scholar 

  12. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  13. Chen, X. & Tung, K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 345, 897–903 (2014).

    Article  CAS  Google Scholar 

  14. Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015).

    Article  CAS  Google Scholar 

  15. Lee, S.-K. et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 8, 445–449 (2015).

    Article  CAS  Google Scholar 

  16. Liu, W., Xie, S.-P. & Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 7, 10926 (2016).

    Article  CAS  Google Scholar 

  17. Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

    Article  Google Scholar 

  18. Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

    Article  CAS  Google Scholar 

  19. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  20. Giorgetta, M. A. et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597 (2013).

    Article  Google Scholar 

  21. Smith, D. M. et al. Earth’s energy imbalance since 1960 in observations and CMIP5 models. Geophys. Res. Lett. 42, 1205–1213 (2015).

    Article  Google Scholar 

  22. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  23. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth’s energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  24. Palmer, M. D. & McNeall, D. J. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014).

    Article  Google Scholar 

  25. Baker, M. B. & Roe, G. H. The shape of things to come: why is climate change so predictable? J. Clim. 22, 4574–4589 (2009).

    Article  Google Scholar 

  26. Geoffroy, O. et al. Transient climate response in a two-layer energy-balance model. Part I: analytical solution and parameter calibration using CMIP5 AOGCM experiments. J. Clim. 26, 1841–1857 (2013).

    Article  Google Scholar 

  27. Brown, P. T., Li, W., Li, L. & Ming, Y. Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys. Res. Lett. 41, 5175–5183 (2014).

    Article  Google Scholar 

  28. Byrne, P. B. & O’Gorman, P. A. Land-ocean warming contrast over a wide range of climates: convective quasi-equilibrium theory and idealized simulations. J. Clim. 26, 4000–4016 (2013).

    Article  Google Scholar 

  29. Stephens, G. L. et al. The albedo of Earth. Rev. Geophys. 53, 141–163 (2015).

    Article  Google Scholar 

  30. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earth’s Future 1, 19–32 (2013).

    Article  Google Scholar 

  31. Loeb, N. G. et al. Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Clim. 22, 748–766 (2009).

    Article  Google Scholar 

  32. Johnson, G. C., Lyman, J. M. & Loeb, N. G. Improving estimates of Earth’s energy imbalance. Nat. Clim. Change 6, 639–640 (2016).

    Article  Google Scholar 

  33. Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015).

    Article  CAS  Google Scholar 

  34. Mauritsen, T. et al. Tuning the climate of a global model. J. Adv. Model. Earth Syst. 4, M00A01 (2012).

    Google Scholar 

  35. Jungclaus, J. et al. CMIP5 Simulations of the Max Planck Institute for Meteorology (MPI-M) Based on the MPI-ESM-LR model: The Decadal2000 Experiment, Served by ESGF (World Data Center for Climate at DKRZ, 2013); http://dx.doi.org/10.1594/WDCC/CMIP5.MXEL00

    Google Scholar 

  36. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  37. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 2SM-1–2SM-30 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  38. Santer, B. D. et al. Consistency of modelled and observed temperature trends in the tropical troposphere. Int. J. Climatol. 28, 1703–1722 (2008).

    Article  Google Scholar 

  39. Sen Gupta, A., Jourdain, N. C., Brown, J. N. & Monselesan, D. Climate drift in the CMIP5 models. J. Clim. 26, 8597–8615 (2013).

    Article  Google Scholar 

  40. Allan, R. P. et al. Changes in global net radiative imbalance 1985–2012. Geophys. Res. Lett. 41, 5588–5598 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Max Planck Society for the Advancement of Science through the International Max Planck Research School on Earth System Modelling (IMPRS-ESM). J.J. acknowledges support from the European Union’s Horizon 2020 research and innovation programme (grant agreement no 633211). We thank H. Haak for his technical assistance, H. Zuo and D. Peterson for providing the NEMO grid configuration, and B. Stevens and C. Li for their comments on the manuscript. We are indebted to L. Kornblueh for producing the large historical ensemble and to T. Schulthess and the Swiss National Computing Centre (CSCS) for providing the necessary computational resources. Thanks also to J. Kröger for producing the RCP4.5 extensions with the Deutsches Klimarechenzentrum (DKRZ) facilities.

Author information

Authors and Affiliations

Authors

Contributions

C.H. and J.M. conceived the original idea for this study. C.H. developed the methodology and performed the analysis. All authors discussed the results. C.H. wrote the manuscript with input from J.M., T.M. and J.J.

Corresponding author

Correspondence to Christopher Hedemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3531 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hedemann, C., Mauritsen, T., Jungclaus, J. et al. The subtle origins of surface-warming hiatuses. Nature Clim Change 7, 336–339 (2017). https://doi.org/10.1038/nclimate3274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing