Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local temperature response to land cover and management change driven by non-radiative processes

Abstract

Following a land cover and land management change (LCMC), local surface temperature responds to both a change in available energy and a change in the way energy is redistributed by various non-radiative mechanisms. However, the extent to which non-radiative mechanisms contribute to the local direct temperature response for different types of LCMC across the world remains uncertain. Here, we combine extensive records of remote sensing and in situ observation to show that non-radiative mechanisms dominate the local response in most regions for eight of nine common LCMC perturbations. We find that forest cover gains lead to an annual cooling in all regions south of the upper conterminous United States, northern Europe, and Siberia—reinforcing the attractiveness of re-/afforestation as a local mitigation and adaptation measure in these regions. Our results affirm the importance of accounting for non-radiative mechanisms when evaluating local land-based mitigation or adaptation policies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global patterns of the energy redistribution factor.
Figure 2: Annual local surface temperature response to LCMC.
Figure 3: Non-radiative forcing index (NRFI).
Figure 4: Local effectiveness of local re-/afforestation.

Similar content being viewed by others

References

  1. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  CAS  Google Scholar 

  2. Pielke, R. A. Sr et al. Land use/land cover changes and climate: modeling analysis and observational evidence. WIREs Clim. Change 2, 828–850 (2011).

    Article  Google Scholar 

  3. Mahmood, R. et al. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953 (2013).

    Article  Google Scholar 

  4. Feddema, J. J. et al. The importance of land-cover change in simulating future climates. Science 310, 1674–1678 (2005).

    Article  CAS  Google Scholar 

  5. Betts, R. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation. Tellus B 59, 602–615 (2007).

    Article  CAS  Google Scholar 

  6. Pielke, R. A. Sr et al. The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases. Phil. Trans. R. Soc. Lond. A 360, 1705–1719 (2002).

    Article  CAS  Google Scholar 

  7. Juang, J.-Y., Katul, G., Siqueira, M., Stoy, P. & Novick, K. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophys. Res. Lett. 34, L21408 (2007).

    Article  Google Scholar 

  8. Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).

    Article  Google Scholar 

  9. Lee, X. et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387 (2011).

    Article  CAS  Google Scholar 

  10. Vanden Broucke, S., Luyssaert, S., Davin, E. L., Janssens, I. & van Lipzig, N. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations. J. Geophys. Res. 120, 2015JD023095 (2015).

    Google Scholar 

  11. Jones, A. D., Collins, W. D. & Torn, M. S. On the additivity of radiative forcing between land use change and greenhouse gases. Geophys. Res. Lett. 40, 4036–4041 (2013).

    Article  Google Scholar 

  12. Davin, E. L., de Noblet-Ducoudré, N. & Friedlingstein, P. Impact of land cover change on surface climate: relevance of the radiative forcing concept. Geophys. Res. Lett. 34, L13702 (2007).

    Article  CAS  Google Scholar 

  13. Lutz, D. A. et al. Tradeoffs between three forest ecosystem services across the state of New Hampshire, USA: timber, carbon, and albedo. Ecol. Appl. 26, 146–161 (2015).

    Article  Google Scholar 

  14. Caiazzo, F. et al. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects. Enviro. Res. Lett. 9, 024015 (2014).

    Article  Google Scholar 

  15. Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010).

    Article  CAS  Google Scholar 

  16. Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 659–740 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  17. Anderson-Teixeira, K. et al. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Change 2, 177–181 (2012).

    Article  Google Scholar 

  18. West, P. C., Narisma, G. T., Barford, C. C., Kucharik, C. J. & Foley, J. A. An alternative approach for quantifying climate regulations by ecosystems. Front. Ecol. Environ. 9, 126–133 (2011).

    Article  Google Scholar 

  19. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Vol. 4 (IGES, 2006).

  20. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

    Article  Google Scholar 

  21. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  CAS  Google Scholar 

  22. Baldocchi, D. & Ma, S. How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA. Tellus B 65, 19994 (2013).

    Article  Google Scholar 

  23. Zhao, L., Lee, X., Smith, R. B. & Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 511, 216–219 (2014).

    Article  CAS  Google Scholar 

  24. Chen, L. & Dirmeyer, P. A. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling. Environ. Res. Lett. 11, 034002 (2016).

    Article  Google Scholar 

  25. Jin, M. & Dickinson, R. E. Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environ. Res. Lett. 5, 044004 (2010).

    Article  Google Scholar 

  26. Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    Article  Google Scholar 

  27. Boisier, J. P. et al. Attributing the impacts of land-cover changes in temperate regions on surface temperature and heat fluxes to specific causes: results from the first LUCID set of simulations. J. Geophys. Res. 117, D12116 (2012).

    Article  Google Scholar 

  28. Zhang, M. et al. Response of surface air temperature to small-scale land clearing across latitudes. Environ. Res. Lett. 9, 034002 (2014).

    Article  Google Scholar 

  29. Peng, S.-S. et al. Afforestation in China cools local land surface temperature. Proc. Natl Acad. Sci. USA 111, 2915–2919 (2014).

    Article  CAS  Google Scholar 

  30. Li, Y. et al. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 6, 6603 (2015).

    Article  CAS  Google Scholar 

  31. Zhao, K. & Jackson, R. B. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329–353 (2014).

    Article  Google Scholar 

  32. Li, Z.-L. et al. Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ. 131, 14–37 (2013).

    Article  Google Scholar 

  33. Swann, A. L. S., Fung, I. & Chiang, J. C. H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl Acad. Sci. USA 109, 712–716 (2011).

    Article  Google Scholar 

  34. Winckler, J., Reick, C. & Pongratz, J. Robust identification of local biogeopysical effects of land-cover change in a global climate model. J. Clim. 30, 1159–1176 (2017).

    Article  Google Scholar 

  35. Malyshev, S., Shevliakova, E., Stouffer, R. J. & Pacala, S. Contrasting local versus regional effects of land-use-change-induced heterogeneity on historical climate: analysis with the GFDL Earth system model. J. Clim. 28, 5448–5469 (2015).

    Article  Google Scholar 

  36. Kumar, S. et al. Land use/cover change impacts in CMIP5 climate simulations: a new methodology and 21st century challenges. J. Geophys. Res. 118, 6337–6353 (2013).

    Google Scholar 

  37. Alkama, R. & Cescatti, A. Biophysical climate impacts of recent changes in global forest cover. Science 351, 600–604 (2016).

    Article  CAS  Google Scholar 

  38. Friedl, M. A. et al. Global land cover mapping from MODIS: algorithms and early results. Remote Sens. Environ. 83, 287–302 (2002).

    Article  Google Scholar 

  39. Stoy, P. C. et al. Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Glob. Change Biol. 12, 2115–2135 (2006).

    Article  Google Scholar 

  40. Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).

    Article  CAS  Google Scholar 

  41. Mueller, N. D. et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nat. Clim. Change 6, 317–322 (2016).

    Article  Google Scholar 

  42. Meiyappan, P. & Jain, A. K. Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years. Front. Earth Sci. 6, 122–139 (2012).

    Article  Google Scholar 

  43. Nair, U. S. et al. The role of land use change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia. J. Geophys. Res. 116, D07103 (2011).

    Google Scholar 

  44. Montenegro, A. et al. The net carbon drawdown of small scale afforestation from satellite observations. Glob. Planet. Change 69, 195–204 (2009).

    Article  Google Scholar 

  45. Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).

    Article  CAS  Google Scholar 

  46. Bright, R. M., Bogren, W., Bernier, P. Y. & Astrup, R. Carbon equivalent metrics for albedo changes in land management contexts: relevance of the time dimension. Ecol. Appl. 26, 1868–1880 (2016).

    Article  Google Scholar 

  47. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Article  CAS  Google Scholar 

  48. Pitman, A. J. et al. Importance of background climate in determining impact of land-cover change on regional climate. Nat. Clim. Change 1, 472–475 (2011).

    Article  CAS  Google Scholar 

  49. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  50. Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).

    Article  Google Scholar 

  51. Gao, F. et al. Multi-scale climatological albedo look-up maps derived from MODIS BRDF/albedo products. J. Appl. Remote Sens. 8, 083532-1 (2014).

    Google Scholar 

  52. Zhou, L. et al. Relations between albedos and emissivities from MODIS and ASTER data over North African Desert. Geophys. Res. Lett. 30, 2026 (2003).

    Google Scholar 

  53. Wilson, K. et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 113, 223–243 (2002).

    Article  Google Scholar 

  54. Hall, D. K., Salomonson, V. V. & Riggs, G. 2006: MODIS/Terra Snow Cover Monthly L3 Global 0.05Deg CMG, Version 5 (National Snow and Ice Data Center (NSIDC), accessed 11 November 2015); http://dx.doi.org/10.5067/IPPLURB6RPCN

  55. Kato, S. et al. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740 (2012).

    Article  Google Scholar 

  56. Willmott, C. J. & Matsuura, K. Terrestrial Air Temperature and Precipitation: Monthly and Annual Time Series (1950–1999) (Univ. Delaware, 2001); http://climate.geog.udel.edu/climate/html_pages/README.ghcn_ts2.html

    Google Scholar 

  57. Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    Article  Google Scholar 

  58. Collins, W. J. et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).

    Article  Google Scholar 

  59. World Research Climate Programme. CMIP5 Multi-Model Ensemble “HadGEM2-ES historicalGHG_r1i1p1” (US Department of Energy/Lawrence Livermore National Laboratory, accessed 23 November 2016); https://pcmdi.llnl.gov/projects/cmip5

Download references

Acknowledgements

R.M.B. was supported with funding provided by The Research Council of Norway (250113/F20) and the Norwegian Ministry of Food and Agriculture (355002). J.P. was supported by German Research Foundation’s Emmy Noether Program (PO 1751/1-1). A.C. was supported by EU-FP7-LUC4C (603542).

Author information

Authors and Affiliations

Authors

Contributions

R.M.B. conceived and scoped the study, downloaded and analysed data, produced figures, and wrote the manuscript. All authors contributed equally to the analysis and interpretation of data, drafting and revising the article critically for important intellectual content, and approving the final version to be published.

Corresponding author

Correspondence to Ryan M. Bright.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bright, R., Davin, E., O’Halloran, T. et al. Local temperature response to land cover and management change driven by non-radiative processes. Nature Clim Change 7, 296–302 (2017). https://doi.org/10.1038/nclimate3250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing