Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice


The Arctic has seen rapid sea-ice decline in the past three decades, whilst warming at about twice the global average rate. Yet the relationship between Arctic warming and sea-ice loss is not well understood. Here, we present evidence that trends in summertime atmospheric circulation may have contributed as much as 60% to the September sea-ice extent decline since 1979. A tendency towards a stronger anticyclonic circulation over Greenland and the Arctic Ocean with a barotropic structure in the troposphere increased the downwelling longwave radiation above the ice by warming and moistening the lower troposphere. Model experiments, with reanalysis data constraining atmospheric circulation, replicate the observed thermodynamic response and indicate that the near-surface changes are dominated by circulation changes rather than feedbacks from the changing sea-ice cover. Internal variability dominates the Arctic summer circulation trend and may be responsible for about 30–50% of the overall decline in September sea ice since 1979.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Relationship between the September Arctic sea ice and summer large-scale circulation.
Figure 2: Simulated impact of atmospheric circulation on Arctic thermodynamic trends.
Figure 3: Simulated impact of atmospheric circulation on summertime Arctic sea-ice trends.
Figure 4: Observed and estimated radiatively forced trends in upper and lower tropospheric geopotential height and winds.


  1. 1

    Min, S. K., Zhang, X. B., Zwiers, F. W. & Agnew, T. Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett. 35, L21701 (2008).

    Article  Google Scholar 

  2. 2

    Kay, J. E., Holland, M. M. & Jahn, A. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett. 38, L15708 (2011).

    Article  Google Scholar 

  3. 3

    Notz, D. & Marotzke, J. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett. 39, L08502 (2012).

    Article  Google Scholar 

  4. 4

    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).

    Article  Google Scholar 

  5. 5

    Day, J. J., Hargreaves, J. C., Annan, J. D. & Abe-Ouchi, A. Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett. 7, 034011 (2012).

    Article  Google Scholar 

  6. 6

    Rampal, P., Weiss, J., Dubois, C. & Campin, J.-M. IPCC climate models do not capture Arctic sea ice drift acceleration: consequences in terms of projected sea ice thinning and decline. J. Geophys. Res. 116, C00D07 (2011).

    Article  Google Scholar 

  7. 7

    Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5, 86–89 (2015).

    Article  Google Scholar 

  8. 8

    Zhang, R. Mechanisms for low frequency variability of summer Arctic sea ice extent. Proc. Natl Acad. Sci. USA 112, 1422296112 (2015).

    Google Scholar 

  9. 9

    Francis, J. A. & Hunter, E. New insight into the disappearing Arctic sea ice. Eos 87, 509–511 (2006).

    Article  Google Scholar 

  10. 10

    Graversen, R. G. & Wang, M. Polar amplification in a coupled climate model with locked albedo. Clim. Dynam. 33, 629–643 (2009).

    Article  Google Scholar 

  11. 11

    Chylek, P., Folland, C. K., Lesins, G., Dubey, M. K. & Wang, M.-Y. Arctic air temperature change amplification and the Atlantic multidecadal oscillation. Geophys. Res. Lett. 36, L14801 (2009).

    Article  Google Scholar 

  12. 12

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Article  Google Scholar 

  14. 14

    Bintanja, R., Graversen, R. & Hazeleger, W. Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nat. Geosci. 4, 758–761 (2011).

    CAS  Article  Google Scholar 

  15. 15

    Vaughan, D. G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 317–382 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  16. 16

    Park, H.-S., Lee, S., Kosaka, Y., Son, S.-W. & Kim, S.-W. The impact of Arctic winter infrared radiation on early summer sea ice. J. Clim. 28, 6281–6296 (2015).

    Article  Google Scholar 

  17. 17

    Park, D.-S., Lee, S. & Feldstein, S. B. Attribution of the recent winter sea-ice decline over the Atlantic sector of the Arctic Ocean. J. Clim. 28, 4027–4033 (2015).

    Article  Google Scholar 

  18. 18

    Screen, J. A., Deser, C. & Simmonds, I. Local and remote controls on observed Arctic warming. Geophys. Res. Lett. 39, L10709 (2012).

    Article  Google Scholar 

  19. 19

    Perlwitz, J., Hoerling, M. & Dole, R. Arctic tropospheric warming: causes and linkages to lower latitudes. J. Clim. 28, 2154–2167 (2015).

    Article  Google Scholar 

  20. 20

    Deser, C., Walsh, J. E. & Timlin, M. S. Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Clim. 13, 617–633 (2000).

    Article  Google Scholar 

  21. 21

    Hu, A., Rooth, C., Bleck, R. & Deser, C. NAO influence on sea ice extent in the Eurasian coastal region. Geophys. Res. Lett. 29, 2053 (2002).

    Google Scholar 

  22. 22

    Deser, C. & Teng, H. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing 1979–2007. Geophys. Res. Lett. 35, L02504 (2008).

    Article  Google Scholar 

  23. 23

    Ogi, M., Rigor, I. G., McPhee, M. G. & Wallace, J. M. Summer retreat of Arctic sea ice: role of summer winds. Geophys. Res. Lett. 35, L24701 (2008).

    Article  Google Scholar 

  24. 24

    Ogi, M., Yamazaki, K. & Wallace, J. M. Influence of winter and summer surface wind anomalies on summer Arctic sea ice extent. Geophys. Res. Lett. 37, L07701 (2010).

    Article  Google Scholar 

  25. 25

    Watanabe, E., Wang, J., Sumi, A. & Hasumi, H. Arctic dipole anomaly and its contribution to sea ice export from the Arctic Ocean in the 20th century. Geophys. Res. Lett. 33, L23703 (2006).

    Article  Google Scholar 

  26. 26

    Blanchard-Wrigglesworth, E., Armour, K. C., Bitz, C. M. & DeWeaver, E. Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J. Clim. 24, 231–250 (2011).

    Article  Google Scholar 

  27. 27

    Wettstein, J. J. & Deser, C. Internal variability in projections of twenty-first century Arctic sea ice loss: role of the large-scale atmospheric circulation. J. Clim. 27, 527–550 (2014).

    Article  Google Scholar 

  28. 28

    Screen, J. A., Simmonds, I. & Keay, K. Dramatic interannual changes of perennial Arctic sea ice linked to abnormal summer storm activity. J. Geophys. Res. 116, D15105 (2011).

    Article  Google Scholar 

  29. 29

    Kay, J. E., L’Ecuyer, T., Gettelman, A., Stephens, G. & O’Dell, C. The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett. 35, L08503 (2008).

    Article  Google Scholar 

  30. 30

    Francis, J. A. & Hunter, E. Drivers of declining sea ice in the Arctic winter: a tale of two seas. Geophys. Res. Lett. 34, L17503 (2007).

    Article  Google Scholar 

  31. 31

    Schweiger, A. J., Lindsay, R. W., Vavrus, S. & Francis, J. A. Relationships between Arctic clouds and sea ice during autumn. J. Clim. 21, 4799–4810 (2008).

    Article  Google Scholar 

  32. 32

    Bhatt, U. S. et al. The Atmospheric Response to Realistic Reduced Summer Arctic Sea Ice Anomalies, in Arctic Sea Ice Decline: Observations, Projections, Mechanisms, and Implications (American Geophysical Union, 2008).

    Google Scholar 

  33. 33

    Liu, J. P. et al. Has Arctic sea ice loss contributed to increased surface melting of the Greenland ice sheet? J. Clim. 29, 3373–3386 (2016).

    Article  Google Scholar 

  34. 34

    Deser, C., Tomas, R., Alexander, M. & Lawrence, D. The seasonal atmospheric response to projected Arctic sea ice loss in the late 21st century. J. Clim. 23, 333–351 (2010).

    Article  Google Scholar 

  35. 35

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  36. 36

    Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

  37. 37

    Hoerling, M. P., Hurrell, J. W. & Xu, T. Y. Tropical origins for recent North Atlantic climate change. Science 292, 90–92 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Lee, S. Testing of the tropically excited Arctic warming (TEAM) mechanism with traditional El Nino and La Nina. J. Clim. 25, 4015–4022 (2012).

    Article  Google Scholar 

  39. 39

    Ding, Q. H. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nat. Clim. Change 4, 911–916 (2014).

    Article  Google Scholar 

  41. 41

    Liu, Y. & Key, J. Assessment of Arctic cloud cover anomalies in atmospheric reanalysis products using satellite data. J. Clim. 29, 6065–6083 (2016).

    Article  Google Scholar 

  42. 42

    Barnes, E. A. & Screen, J. The impact of Arctic warming on the midlatitude jetstream: Can it? Has it? Will it? WIREs Clim. Change 6, 277–286 (2015).

    Article  Google Scholar 

  43. 43

    Overland, J. E. & Wang, M. Increased variability in the early winter subarctic North American atmospheric circulation. J. Clim. 28, 7297–7305 (2015).

    Article  Google Scholar 

  44. 44

    Francis, J. A. & Skific, N. Evidence linking rapid Arctic warming to mid-latitude weather patterns. Phil. Trans. R. Soc. A 373, 20140170 (2015).

    Article  Google Scholar 

  45. 45

    Cohen, J. An observational analysis: tropical relative to Arctic influence on midlatitude weather in the era of Arctic amplification. Geophys. Res. Lett. 43, 5287–5294 (2016).

    Article  Google Scholar 

  46. 46

    Zhang, J. & Rothrock, D. A. Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates. Mon. Weath. Rev. 131, 845–861 (2003).

    Article  Google Scholar 

  47. 47

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  48. 48

    Roeckner, E. et al. Max Planck Institut für Meteorologie Report (Max-Planck-Institut für Meteorologie, 2003).

    Google Scholar 

  49. 49

    Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

    Article  Google Scholar 

  50. 50

    Bretherton, C. S., Widmann, M., Dymnidov, V. P., Wallace, J. M. & Blade, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 12, 1990–2009 (1999).

    Article  Google Scholar 

Download references


This study was supported by NOAA’s Climate Program Office, Climate Variability and Predictability Program (NA15OAR4310162). We thank the Max Planck Institute for Meteorology and National Center for Atmospheric Research model developers for making the ECHAM5 and CESM available and M. Steele, J. M. Wallace, C. Bitz, Q. Fu, M. Wang, D. L. Hartmann and D. Frierson for discussions. We acknowledge the CESM Large Ensemble Community Project and supercomputing resources provided by NSF/CISL/Yellowstone. Q.D. acknowledges support from the University of Washington’s Polar Science Center, the UW-Future of Ice Initiative, the Tamaki Foundation and UCSB Center for Scientific Computing at CNSI. A.S. is grateful for funding from the National Science Foundation through grant ARC-1203425. D.S.B. acknowledges support from the Tamaki Foundation. R.E. acknowledges support from NASA NNXBAQ35G.

Author information




Q.D. led this work with contributions from all authors. Q.D. made the calculations, implemented the general circulation model experiments, created the figures, and led writing of the paper. All authors contributed to the experimental design, interpreting results and writing the paper.

Corresponding author

Correspondence to Qinghua Ding.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2166 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Schweiger, A., L’Heureux, M. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nature Clim Change 7, 289–295 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing