Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Species’ traits influenced their response to recent climate change

An Author Correction to this article was published on 16 July 2018

Abstract

Although it is widely accepted that future climatic change—if unabated—is likely to have major impacts on biodiversity1,2, few studies have attempted to quantify the number of species whose populations have already been impacted by climate change3,4. Using a systematic review of published literature, we identified mammals and birds for which there is evidence that they have already been impacted by climate change. We modelled the relationships between observed responses and intrinsic (for example, body mass) and spatial traits (for example, temperature seasonality within the geographic range). Using this model, we estimated that 47% of terrestrial non-volant threatened mammals (out of 873 species) and 23.4% of threatened birds (out of 1,272 species) may have already been negatively impacted by climate change in at least part of their distribution. Our results suggest that populations of large numbers of threatened species are likely to be already affected by climate change, and that conservation managers, planners and policy makers must take this into account in efforts to safeguard the future of biodiversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and predicted response of mammals and birds to climate change.
Figure 2: Map of the study sites.

Similar content being viewed by others

References

  1. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  Google Scholar 

  2. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1132 (Cambridge Univ. Press, 2014).

  3. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  4. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article  CAS  Google Scholar 

  5. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1535 (Cambridge Univ. Press, 2013).

  6. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

    Article  CAS  Google Scholar 

  7. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  8. Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

    Article  CAS  Google Scholar 

  9. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article  Google Scholar 

  10. Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).

    Article  Google Scholar 

  11. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    Article  CAS  Google Scholar 

  12. Poyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).

    Article  Google Scholar 

  13. Santini, L. et al. A trait-based approach for predicting species responses to environmental change from sparse data: how well might terrestrial mammals track climate change? Glob. Change Biol. 22, 2415–2424 (2016).

    Article  Google Scholar 

  14. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  Google Scholar 

  15. Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    Article  Google Scholar 

  16. The IUCN Red List of Threatened Species. Version 2015-4 (IUCN, accessed 18 March 2016); http://www.iucnredlist.org

  17. McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Article  Google Scholar 

  18. Bradshaw, C. J. A. et al. Predictors of contraction and expansion of area of occupancy for British birds. Proc. R. Soc. B 281, 20140744 (2014).

    Article  Google Scholar 

  19. Janzen, D. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  20. Gehring, T. M. & Swihart, R. K. Body size, niche breadth, and ecologically scaled responses to habitat fragmentation: mammalian predators in an agricultural landscape. Biol. Conserv. 109, 283–295 (2003).

    Article  Google Scholar 

  21. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article  CAS  Google Scholar 

  22. Visser, M. E., Holleman, L. J. M. & Caro, S. P. Temperature has a causal effect on avian timing of reproduction. Proc. Biol. Sci. 276, 2323–2331 (2009).

    Article  Google Scholar 

  23. Visser, M., Both, C. & Lambrechts, M. Global climate change leads to mistimed avian reproduction. Adv. Ecol. Res. 35, 89–110 (2004).

    Article  Google Scholar 

  24. Vedder, O., Bouwhuis, S. & Sheldon, B. C. Quantitative assessment of the importance of phenotypic plasticity in adaptation to climate change in wild bird populations. PLoS Biol. 11, e1001605 (2013).

    Article  CAS  Google Scholar 

  25. Capizzi, D., Bertolino, S. & Mortelliti, A. Rating the rat: global patterns and research priorities in impacts and management of rodent pests. Mamm. Rev. 44, 148–162 (2014).

    Article  Google Scholar 

  26. Brockman, D. K. & van Schaik, C. P. Seasonality in Primates: Studies of Living and Extinct Human and Non-Human Primates Vol. 44 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  27. Corlett, R. Climate change in the tropics: the end of the world as we know it? Biol. Conserv. 151, 22–25 (2012).

    Article  Google Scholar 

  28. Isaak, D. & Rieman, B. Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Glob. Change Biol. 19, 742–751 (2013).

    Article  Google Scholar 

  29. Glibert, P., Allen, J. I. & Artioli, Y. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob. Change Biol. 20, 3845–3858 (2014).

    Article  Google Scholar 

  30. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  31. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    Article  CAS  Google Scholar 

  32. Jenkins, C., Pimm, S. & Joppa, L. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article  CAS  Google Scholar 

  33. Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 1–8 (2015).

    Google Scholar 

  34. Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    Article  CAS  Google Scholar 

  35. Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Santini for stimulating discussions on phylogenetic models.

Author information

Authors and Affiliations

Authors

Contributions

M.P., P.V., C.R. and J.E.M.W. designed the framework for the meta-analysis. M.P. conducted the analyses and collected the data for mammals. P.V. contributed to the analyses. S.H.M.B. provided data and examined the results for birds. F.M.C. collected data for birds. All authors contributed to the writing, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michela Pacifici.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacifici, M., Visconti, P., Butchart, S. et al. Species’ traits influenced their response to recent climate change. Nature Clim Change 7, 205–208 (2017). https://doi.org/10.1038/nclimate3223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing