Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration

Abstract

The recent ‘warming hiatus’ presents an excellent opportunity to investigate climate sensitivity of carbon cycle processes. Here we combine satellite and atmospheric observations to show that the rate of net biome productivity (NBP) has significantly accelerated from −0.007 ± 0.065 PgC yr−2 over the warming period (1982 to 1998) to 0.119 ± 0.071 PgC yr−2 over the warming hiatus (1998–2012). This acceleration in NBP is not due to increased primary productivity, but rather reduced respiration that is correlated (r = 0.58; P = 0.0007) and sensitive (γ = 4.05 to 9.40 PgC yr−1 per °C) to land temperatures. Global land models do not fully capture this apparent reduced respiration over the warming hiatus; however, an empirical model including soil temperature and moisture observations better captures the reduced respiration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in trends of land surface temperatures and terrestrial C cycle processes over three decades.
Figure 2: Climate sensitivity of terrestrial carbon cycle processes over the last three decades.
Figure 3: Total respiration estimated from observations and simulated from models.

Similar content being viewed by others

References

  1. Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

    Article  Google Scholar 

  2. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  3. Bacastow, R. et al. Atmospheric carbon dioxide, the Southern Oscillation, and the weak 1975 El Niño. Science 210, 66–68 (1980).

    Article  CAS  Google Scholar 

  4. Bousquet, P. et al. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290, 1342–1346 (2000).

    Article  CAS  Google Scholar 

  5. Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article  CAS  Google Scholar 

  6. Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. USA 112, 15591–15596 (2015).

    CAS  Google Scholar 

  7. Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. 113, G00B07 (2008).

    Google Scholar 

  8. Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).

    Article  CAS  Google Scholar 

  9. Hoffman, F. M. et al. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. J. Geophys. Res. 119, 141–162 (2014).

    Article  CAS  Google Scholar 

  10. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  Google Scholar 

  11. Schulze, E.-D., Wirth, C. & Heimann, M. Managing forests after Kyoto. Science 289, 2058–2059 (2000).

    Article  CAS  Google Scholar 

  12. Chapin, F. III et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems 9, 1041–1050 (2006).

    Article  CAS  Google Scholar 

  13. Ballantyne, A. et al. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences 12, 2565–2584 (2015).

    Article  Google Scholar 

  14. Fyfe, J. C., Gillett, N. P. & Zwiers, F. W. Overestimated global warming over the past 20 years. Nat. Clim. Change 3, 767–769 (2013).

    Article  Google Scholar 

  15. Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015).

    Article  CAS  Google Scholar 

  16. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  CAS  Google Scholar 

  17. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  18. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  19. Sulman, B. N. et al. Impact of hydrological variations on modeling of peatland CO2 fluxes: results from the North American Carbon Program site synthesis. J. Geophys. Res. 117, G01031 (2012).

    Article  Google Scholar 

  20. Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).

    Article  Google Scholar 

  21. Chen, S., Zou, J., Hu, Z., Chen, H. & Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: summary of available data. Agric. For. Meteorol. 198, 335–346 (2014).

    Article  Google Scholar 

  22. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  CAS  Google Scholar 

  23. Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).

    Article  CAS  Google Scholar 

  24. Piao, S. et al. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91, 652–661 (2010).

    Article  Google Scholar 

  25. Suseela, V., Conant, R. T., Wallenstein, M. D. & Dukes, J. S. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment. Glob. Change Biol. 18, 336–348 (2012).

    Article  Google Scholar 

  26. Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev. Geophys. 53, 785–818 (2015).

    Article  Google Scholar 

  27. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  CAS  Google Scholar 

  28. Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    Article  Google Scholar 

  29. Högberg, P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001).

    Article  Google Scholar 

  30. van der Werf, G. R. et al. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

    Article  CAS  Google Scholar 

  31. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  CAS  Google Scholar 

  32. Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).

    Article  CAS  Google Scholar 

  33. Sarmiento, J. L. et al. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7, 2351–2367 (2010).

    Article  CAS  Google Scholar 

  34. Gu, L. et al. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299, 2035–2038 (2003).

    Article  Google Scholar 

  35. Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    Article  CAS  Google Scholar 

  36. Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  Google Scholar 

  37. England, M. H., Kajtar, J. B. & Maher, N. Robust warming projections despite the recent hiatus. Nat. Clim. Change 5, 394–396 (2015).

    Article  Google Scholar 

  38. Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J. & Dukes, J. S. Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nat. Clim. Change 6, 407–411 (2016).

    Article  Google Scholar 

  39. Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S. & Fisher, R. A. Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback. Geophys. Res. Lett. 42, 8624–8631 (2015).

    Article  CAS  Google Scholar 

  40. Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).

    Article  CAS  Google Scholar 

  41. Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Intl J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  42. Team G. GISS Surface Temperature Analysis (GISTEMP) (NASA Goddard Institute for Space Studies, accessed 13 May 2015); http://data.giss.nasa.gov/gistempp

  43. Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

    Article  Google Scholar 

  44. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article  Google Scholar 

  45. Jones, P. et al. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J. Geophys. Res. 117, D05127 (2012).

    Google Scholar 

  46. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI) 3g and Fraction of Photosynthetically Active Radiation (FPAR) 3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sensing 5, 927–948 (2013).

    Google Scholar 

  47. Zhao, M., Running, S., Heinsch, F. A. & Nemani, R. in Land Remote Sensing and Global Environmental Change (eds Ramachandran, B., Justice, C. O. & Abrams, M. J.) 635–660 (Springer, 2011).

    Google Scholar 

  48. Samanta, A. et al. Comment on ‘Drought-induced reduction in global terrestrial net primary production from 2000 through 2009’. Science 333, 1093 (2011).

    Article  CAS  Google Scholar 

  49. Heinsch, F. A. et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sensing 44, 1908–1925 (2006).

    Article  Google Scholar 

  50. Cleveland, C. C. et al. A comparison of plot-based satellite and Earth system model estimates of tropical forest net primary production. Glob. Biogeochem. Cycles 29, 626–644 (2015).

    Article  CAS  Google Scholar 

  51. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116 (2011).

  52. Zhao, M., Running, S. W. & Nemani, R. R. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. 111, G01002 (2006).

    Google Scholar 

  53. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–185 (2013).

    Article  Google Scholar 

  54. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).

    Article  CAS  Google Scholar 

  55. Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11593–11610 (1995).

    Article  CAS  Google Scholar 

  56. Andres, R. J., Boden, T. A. & Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66, 23616 (2014).

    Article  Google Scholar 

  57. Houghton, R. A. Land-use change and the carbon cycle. Glob. Change Biol. 1, 275–287 (1995).

    Article  Google Scholar 

  58. Stocker, B., Strassmann, K. & Joos, F. Sensitivity of Holocene atmospheric CO2 and the modern carbon budget to early human land use: analyses with a process-based model. Biogeosciences 8, 69–88 (2011).

    Article  CAS  Google Scholar 

  59. Jain, A. K., Meiyappan, P., Song, Y. & House, J. I. CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data. Glob. Change Biol. 19, 2893–2906 (2013).

    Article  Google Scholar 

  60. Friedlingstein, P. et al. Update on CO2 emissions. Nat. Geosci. 3, 811–812 (2010).

    Article  CAS  Google Scholar 

  61. Erb, K.-H. et al. Bias in the attribution of forest carbon sinks. Nat. Clim. Change 3, 854–856 (2013).

    Article  CAS  Google Scholar 

  62. Ballantyne, A., Alden, C., Miller, J., Tans, P. & White, J. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012).

    Article  CAS  Google Scholar 

  63. Morton, D. C. Forest carbon fluxes: a satellite perspective. Nat. Clim. Change 6, 346–348 (2016).

    Article  Google Scholar 

  64. Francey, R. J. et al. Atmospheric verification of anthropogenic CO2 emission trends. Nat. Clim. Change 3, 520–524 (2013).

    Article  CAS  Google Scholar 

  65. Ishidoya, S. et al. Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of the global CO2 budget for the period 2000–2010. Tellus B 64, 18964 (2012).

    Article  CAS  Google Scholar 

  66. Manning, A. C. & Keeling, R. F. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B 58, 95–116 (2006).

    Article  Google Scholar 

  67. Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  68. Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637 (2001).

    Article  Google Scholar 

  69. Cox, P. M., Huntingford, C. & Harding, R. J. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 212, 79–94 (1998).

    Article  Google Scholar 

  70. Woodward, F. I. & Lomas, M. R. Vegetation dynamics—simulating responses to climatic change. Biol. Rev. 79, 643–670 (2004).

    Article  CAS  Google Scholar 

  71. Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model I: model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, GB1005 (2010).

    Google Scholar 

  72. Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Article  Google Scholar 

  73. Oleson, K. et al. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. 113, G01021 (2008).

    Article  Google Scholar 

  74. Exbrayat, J. F., Pitman, A. J., Zhang, Q., Abramowitz, G. & Wang, Y. P. Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences 10, 7095–7108 (2013).

    Article  CAS  Google Scholar 

  75. Hengl, T. et al. SoilGrids1km—global soil information based on automated mapping. PLoS ONE 9, e105992 (2014).

    Article  Google Scholar 

  76. Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  77. Jones, P., Parker, D., Osborn, T. & Briffa, K. Trends: A Compendium of Data on Global Change 1–5 (Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center, 2006).

    Google Scholar 

  78. Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

    Article  CAS  Google Scholar 

  79. Trenberth, K. E. Has there been a hiatus? Science 349, 691–692 (2015).

    Article  CAS  Google Scholar 

  80. Li, W. et al. Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proc. Natl Acad. Sci. 113, 13104–13108 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was stimulated by a workshop on abrupt changes in the global carbon cycle sponsored by Princeton University and the The Finnish Society of Sciences and Letters. Further support for this research was provided by NSF-DEB no. 1550932 and USDA no. MONZ-1302. W.R.L.A. was supported by a NOAA global change fellowship and W.K.S. was supported by a Luc Hoffman Fellowship. Satellite observations and MOD-17 algorithm development were supported by NASA grant NNX08AG87A to S.W.R. We are also grateful to the global citizens and NOAA scientists who have helped maintain the global atmospheric CO2 observation network. This work was greatly improved through input from colleagues D. Lombardozzi and B. Sullivan.

Author information

Authors and Affiliations

Authors

Contributions

This study was conceived of at a workshop hosted by J.S. and P.K. and the study was designed by A.B., W.A. and W.S. Atmospheric data were analysed by A.B. and P.T. The compilation and analysis of satellite data was conducted by W.S. and S.R. Simulation data from ESMs were accessed and analysed by A.A., P.F. and E.S. and simulation data from DGVMs was provided by B.P. All authors contributed during the writing of the paper.

Corresponding author

Correspondence to Ashley Ballantyne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 830 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballantyne, A., Smith, W., Anderegg, W. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Clim Change 7, 148–152 (2017). https://doi.org/10.1038/nclimate3204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing