Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unequal household carbon footprints in China

Abstract

Households’ carbon footprints are unequally distributed among the rich and poor due to differences in the scale and patterns of consumption. We present distributional focused carbon footprints for Chinese households and use a carbon-footprint-Gini coefficient to quantify inequalities. We find that in 2012 the urban very rich, comprising 5% of population, induced 19% of the total carbon footprint from household consumption in China, with 6.4 tCO2/cap. The average Chinese household footprint remains comparatively low (1.7 tCO2/cap), while those of the rural population and urban poor, comprising 58% of population, are 0.5–1.6 tCO2/cap. Between 2007 and 2012 the total footprint from households increased by 19%, with 75% of the increase due to growing consumption of the urban middle class and the rich. This suggests that a transformation of Chinese lifestyles away from the current trajectory of carbon-intensive consumption patterns requires policy interventions to improve living standards and encourage sustainable consumption.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Carbon footprints of Chinese and international household consumption in 2012 and 2011, respectively, from fossil fuels and cement production.
Figure 2: Relative distribution of household carbon footprints from fossil fuels and cement, income and population size among 13 income groups in 2012.
Figure 3: Quantifying inequality.

References

  1. 1

    Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Carson, R. T. The environmental kuznets curve: seeking empirical regularity and theoretical structure. Rev. Environ. Econ. Policy 4, 3–23 (2010).

    Article  Google Scholar 

  3. 3

    Liu, Z. et al. Targeted opportunities to address the climate–trade dilemma in China. Nat. Clim. Change 6, 201–206 (2015).

    Article  Google Scholar 

  4. 4

    Hoekstra, A. Y. & Wiedmann, T. O. Humanity’s unsustainable environmental footprint. Science 344, 1114–1117 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Feng, K. & Hubacek, K. Carbon implications of China’s urbanization. Energy Ecol. Environ. 1, 39–44 (2016).

    Article  Google Scholar 

  6. 6

    Ottelin, J., Heinonen, J. & Junnila, S. New energy efficient housing has reduced carbon footprints in outer but not in inner urban areas. Environ. Sci. Technol. 49, 9574–9583 (2015).

    CAS  Article  Google Scholar 

  7. 7

    Wiedenhofer, D., Lenzen, M. & Steinberger, J. K. Energy requirements of consumption: urban form, climatic and socio-economic factors, rebounds and their policy implications. Energy Policy 63, 696–707 (2013).

    Article  Google Scholar 

  8. 8

    Liu, L.-C., Wu, G., Wang, J.-N. & Wei, Y.-M. China’s carbon emissions from urban and rural households during 1992–2007. J. Clean. Prod. 19, 1754–1762 (2011).

    CAS  Article  Google Scholar 

  9. 9

    Chakravarty, S. et al. Sharing global CO2 emission reductions among one billion high emitters. Proc. Natl Acad. Sci. USA 106, 11884–11888 (2009).

    CAS  Article  Google Scholar 

  10. 10

    Chancel, L. & Piketty, T. Carbon and Inequality: From Kyoto to Paris (PSE, 2015).

    Google Scholar 

  11. 11

    Di Giulio, A. & Fuchs, D. Sustainable consumption corridors: concept, objections, and responses. GAIA 23, 184–192 (2014).

    Article  Google Scholar 

  12. 12

    Grubler, A. & Pachauri, S. Problems with burden-sharing proposal among one billion high emitters. Proc. Natl Acad. Sci. USA 106, E122–E123 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Jackson, R. B. et al. Reaching peak emissions. Nat. Clim. Change 6, 7–10 (2015).

    Article  Google Scholar 

  14. 14

    Spangenberg, J. China in the anthropocene: culprit, victim or last best hope for a global ecological civilisation? BioRisk 9, 1–37 (2014).

    Article  Google Scholar 

  15. 15

    Peters, G. P., Andrew, R. M., Solomon, S. & Friedlingstein, P. Measuring a fair and ambitious climate agreement using cumulative emissions. Environ. Res. Lett. 10, 105004 (2015).

    Article  Google Scholar 

  16. 16

    World Development Indicators (WDI) Database (World Bank, 2016); http://data.worldbank.org/indicator

  17. 17

    Xie, Y. & Zhou, X. Income inequality in today’s China. Proc. Natl Acad. Sci. USA 111, 6928–6933 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Fan, J.-L. et al. Residential carbon emission evolutions in urban–rural divided China: an end-use and behavior analysis. Sustain. Dev. Energy Wat. Environ. Syst. 101, 323–332 (2013).

    Google Scholar 

  19. 19

    Zhao, X., Li, N. & Ma, C. Residential energy consumption in urban China: a decomposition analysis. Energy Policy 41, 644–653 (2012).

    Article  Google Scholar 

  20. 20

    Golley, J. & Meng, X. Income inequality and carbon dioxide emissions: the case of Chinese urban households. Energy Econ. 34, 1864–1872 (2012).

    Article  Google Scholar 

  21. 21

    Knight, J. Inequality in China An Overview (The World Bank, 2013).

    Book  Google Scholar 

  22. 22

    Minx, J. C. et al. A ‘Carbonizing Dragon’: China’s fast growing CO2 emissions revisited. Environ. Sci. Technol. 45, 9144–9153 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Antal, M. & Van Den Bergh, J. C. J. M. Green growth and climate change: conceptual and empirical considerations. Clim. Policy 16, 165–177 (2016).

    Article  Google Scholar 

  24. 24

    Liu, Z. et al. Energy policy: a low-carbon road map for China. Nature 500, 143–145 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Zhang, X., Karplus, V. J., Qi, T., Zhang, D. & He, J. Carbon emissions in China: how far can new efforts bend the curve? Energy Econ. 54, 388–395 (2016).

    Article  Google Scholar 

  26. 26

    Akenji, L. Consumer scapegoatism and limits to green consumerism. J. Clean. Prod. 63, 13–23 (2014).

    Article  Google Scholar 

  27. 27

    Fuchs, D. et al. Power: the missing element in sustainable consumption and absolute reductions research and action. J. Clean. Prod. 132, 298–307 (2015).

    Article  Google Scholar 

  28. 28

    Lorek, S. & Spangenberg, J. H. Sustainable consumption within a sustainable economy—beyond green growth and green economies. J. Clean. Prod. 63, 33–44 (2014).

    Article  Google Scholar 

  29. 29

    Groot, L. Carbon Lorenz curves. Resour. Energy Econ. 32, 45–64 (2010).

    Article  Google Scholar 

  30. 30

    Teng, F., He, J., Pan, X. & Zhang, C. Metric of carbon equity: carbon Gini Index based on historical cumulative emission per capita. Adv. Clim. Change Res. 2, 134–140 (2011).

    Article  Google Scholar 

  31. 31

    Duarte, R., Mainar, A. & Sánchez-Chóliz, J. Social groups and CO2 emissions in Spanish households. Energy Policy 44, 441–450 (2012).

    Article  Google Scholar 

  32. 32

    Baiocchi, G., Minx, J. & Hubacek, K. The impact of social factors and consumer behavior on carbon dioxide emissions in the United Kingdom: a regression based on input-output and geodemographic consumer segmentation data. J. Ind. Ecol. 14, 50–72 (2010).

    CAS  Article  Google Scholar 

  33. 33

    López, L. A., Arce, G., Morenate, M. & Monsalve, F. Assessing the inequality of Spanish households through the carbon footprint: the 21st century great recession effect: inequality and carbon footprint of Spain. J. Ind. Ecol. 20, 571–581 (2016).

    Article  Google Scholar 

  34. 34

    Weber, C. L. & Matthews, H. S. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 66, 379–391 (2008).

    Article  Google Scholar 

  35. 35

    Kerkhof, A. C., Benders, R. M. J. & Moll, H. C. Determinants of variation in household CO2 emissions between and within countries. Energy Policy 37, 1509–1517 (2009).

    Article  Google Scholar 

  36. 36

    Xu, X., Han, L. & Lv, X. Household carbon inequality in urban China, its sources and determinants. Ecol. Econ. 128, 77–86 (2016).

    Article  Google Scholar 

  37. 37

    Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    CAS  Article  Google Scholar 

  38. 38

    Korsbakken, J. I., Peters, G. P. & Andrew, R. M. Uncertainties around reductions in China’s coal use and CO2 emissions. Nat. Clim. Change 6, 687–690 (2016).

    CAS  Article  Google Scholar 

  39. 39

    Ottelin, J., Heinonen, J. & Junnila, S. Greenhouse gas emissions from flying can offset the gain from reduced driving in dense urban areas. J. Transp. Geogr. 41, 1–9 (2014).

    Article  Google Scholar 

  40. 40

    Girod, B., van Vuuren, D. P. & Hertwich, E. G. Climate policy through changing consumption choices: options and obstacles for reducing greenhouse gas emissions. Glob. Environ. Change 25, 5–15 (2014).

    Article  Google Scholar 

  41. 41

    Girod, B., van Vuuren, D. P. & Hertwich, E. G. Global climate targets and future consumption level: an evaluation of the required GHG intensity. Environ. Res. Lett. 8, 14016 (2013).

    Article  Google Scholar 

  42. 42

    Hofmann, J., Guan, D., Chalvatzis, K. & Huo, H. Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Appl. Energy http://dx.doi.org/10.1016/j.apenergy.2016.06.042 (2016).

  43. 43

    Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P.-P. & Seto, K. C. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA 112, 6283–6288 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Ramaswami, A., Russell, A. G., Culligan, P. J., Sharma, K. R. & Kumar, E. Meta-principles for developing smart, sustainable, and healthy cities. Science 352, 940–943 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Steinberger, J. K., Timmons Roberts, J., Peters, G. P. & Baiocchi, G. Pathways of human development and carbon emissions embodied in trade. Nat. Clim. Change 2, 81–85 (2012).

    CAS  Article  Google Scholar 

  46. 46

    Lamb, W. F. et al. Transitions in pathways of human development and carbon emissions. Environ. Res. Lett. 9, 14011 (2014).

    Article  Google Scholar 

  47. 47

    Jorgenson, A. K. & Givens, J. The changing effect of economic development on the consumption-based carbon intensity of well-being, 1990–2008. PLoS ONE 10, e0123920 (2015).

    Article  Google Scholar 

  48. 48

    Input-Output Table of China, 2012 and 2007 (National Bureau of Statistics, Statistical Press, 2015).

  49. 49

    NBS Energy Statistical Yearbook of China Fourth Revision; 2012 and 2007 (Statistical Press, 2016).

  50. 50

    China Urban Life and Price Yearbook 2011 and 2007 (National Bureau of Statistics, Statistical Press, 2012).

  51. 51

    Narayanan, B., Aguiar, A. & McDougall, R. Global Trade, Assistance, and Production: The GTAP 9 Data Base (Center for Global Trade Analysis, Purdue University, 2015).

    Google Scholar 

  52. 52

    Su, B. & Ang, B. W. Multi-region input–output analysis of CO2 emissions embodied in trade: the feedback effects. Ecol. Econ. 71, 42–53 (2011).

    Article  Google Scholar 

  53. 53

    Shan, Y. et al. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy http://dx.doi.org/10.1016/j.apenergy.2016.03.073 (2016).

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2016YFA0602603 and 2016YFA0602604), the National Natural Science Foundation of China (41629501, 71521002, 41461118, 41501605), Austrian National Science funded project ‘MISO—modelling the global metabolic transition’ (P27590), the UK Economic and Social Research Council funded project ‘Dynamics of Green Growth in European and Chinese Cities’ (ES/L016028/1), the UK Natural Environment Research Council funded project ‘Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing’ (NE/N00714X/1). Many thanks go to J. Minx, F. Krausmann and J. K. Steinberger for their feedback on the manuscript, to G. Peters for support with the global emissions data set for the GTAP-MRIO and to L. Yu for his feedback on the concordances to bridge the GTAP-MRIO and the Chinese national IOTs classifications.

Author information

Affiliations

Authors

Contributions

D.W. and D.G. designed the research, performed calculations and discussed the results. D.W. wrote the paper. D.G., Z.L., J.M., N.Z. and Y.-M.W. collected data and contributed to writing the paper.

Corresponding authors

Correspondence to Dominik Wiedenhofer or Dabo Guan or Yi-Ming Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 951 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiedenhofer, D., Guan, D., Liu, Z. et al. Unequal household carbon footprints in China. Nature Clim Change 7, 75–80 (2017). https://doi.org/10.1038/nclimate3165

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing