Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades

Abstract

The wintertime Arctic stratospheric polar vortex has weakened over the past three decades, and consequently cold surface air from high latitudes is now more likely to move into the middle latitudes1,2,3,4,5. However, it is not known if the location of the polar vortex has also experienced a persistent change in response to Arctic climate change and whether any changes in the vortex position have implications for the climate system. Here, through the analysis of various data sets and model simulations, we show that the Arctic polar vortex shifted persistently towards the Eurasian continent and away from North America in February over the past three decades. This shift is found to be closely related to the enhanced zonal wavenumber-1 waves in response to Arctic sea-ice loss, particularly over the Barents–Kara seas (BKS). Increased snow cover over the Eurasian continent may also have contributed to the shift. Our analysis reveals that the vortex shift induces cooling over some parts of the Eurasian continent and North America which partly offsets the tropospheric climate warming there in the past three decades. The potential vortex shift in response to persistent sea-ice loss in the future6,7, and its associated climatic impact, deserve attention to better constrain future climate changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Polar vortex position and fractional area of regions covered by the polar vortex.
Figure 2: Polar vortex shifts associated with the sea-ice loss.
Figure 3: Analysis of meteorological fields.
Figure 4: Impact of the polar vortex shift.

References

  1. 1

    Kim, B. M. et al. Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun. 5, 4646 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Alexeev, V. A., Esau, I. N., Polyakov, I. V., Byam, S. J. & Sorokina, S. Vertical structure of recent Arctic warming from observed data and reanalysis products. Climatic Change 111, 215–239 (2011).

    Article  Google Scholar 

  3. 3

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Francis, J. A. & Vavrus, S. J. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett. 39, L06801 (2012).

    Article  Google Scholar 

  6. 6

    Boe, J. L., Hall, A. & Qu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2, 341–343 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Liu, J. P., Song, M. R., Horton, R. M. & Hu, Y. Y. Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl Acad. Sci. USA 110, 12571–12576 (2013).

    CAS  Article  Google Scholar 

  8. 8

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  9. 9

    Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34, L09501 (2007).

    Article  Google Scholar 

  10. 10

    Perovich, D. K. & Richter-Menge, J. A. Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci. 1, 417–441 (2009).

    Article  Google Scholar 

  11. 11

    Alexander, M. A. et al. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J. Clim. 17, 890–905 (2004).

    Article  Google Scholar 

  12. 12

    Deser, C., Tomas, R. A. & Peng, S. L. The transient atmospheric circulation response to North Atlantic SST and sea ice anomalies. J. Clim. 20, 4751–4767 (2007).

    Article  Google Scholar 

  13. 13

    Peings, Y. & Magnusdottir, G. Response of the Wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: a numerical study with CAM5. J. Clim. 27, 244–264 (2014).

    Article  Google Scholar 

  14. 14

    Sun, L., Deser, C. & Tomas, R. A. Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J. Clim. 28, 7824–7845 (2015).

    Article  Google Scholar 

  15. 15

    Scinocca, J. F. et al. Impact of sudden Arctic sea-ice loss on stratospheric polar ozone recovery. Geophys. Res. Lett. 36, L24701 (2009).

    Article  Google Scholar 

  16. 16

    Screen, J. A., Simmonds, I., Deser, C. & Tomas, R. The atmospheric response to three decades of observed Arctic sea ice loss. J. Clim. 26, 1230–1248 (2013).

    Article  Google Scholar 

  17. 17

    Sun, L. T., Deser, C., Polvani, L. & Tomas, R. Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring. Environ. Res. Lett. 9, 084016 (2014).

    Article  Google Scholar 

  18. 18

    Ambaum, M. H. P. & Hoskins, B. The NAO troposphere–stratosphere connection. J. Clim. 15, 1969–1978 (2002).

    Article  Google Scholar 

  19. 19

    Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin, M. P. & Charlton-Perez, A. J. The influence of stratospheric vortex displacements and splits on surface climate. J. Clim. 26, 2668–2682 (2013).

    Article  Google Scholar 

  20. 20

    Seviour, W. J. M., Mitchell, D. M. & Gray, L. J. A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett. 40, 5268–5273 (2013).

    Article  Google Scholar 

  21. 21

    O’Callaghan, A., Joshi, M., Stevens, D. & Mitchell, D. The effects of different sudden stratospheric warming types on the ocean. Geophys. Res. Lett. 41, 7739–7745 (2014).

    Article  Google Scholar 

  22. 22

    Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39, L04705 (2012).

    Google Scholar 

  23. 23

    Harvey, V. L., Pierce, R. B., Fairlie, T. D. & Hitchman, M. H. A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res. 107, 4442 (2002).

    Article  Google Scholar 

  24. 24

    Charlton, A. J. & Polvani, L. M. A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J. Clim. 20, 449–469 (2007).

    Article  Google Scholar 

  25. 25

    Mitchell, D. M., Charlton-Perez, A. J. & Gray, L. J. Characterizing the variability and extremes of the stratospheric polar vortices using 2D moment analysis. J. Atmos. Sci. 68, 1194–1213 (2011).

    Article  Google Scholar 

  26. 26

    Cohen, J., Furtado, J., Barlow, M., Alexeev, V. & Cherry, J. Arctic warming, increasing fall snow cover and widespread boreal winter cooling. Environ. Res. Lett. 7, 014007 (2012).

    Article  Google Scholar 

  27. 27

    Overland, J. E., Wood, K. R. & Wang, M. Y. Warm Arctic–cold continents: climate impacts of the newly open Arctic Sea. Polar Res. 30, 15787 (2011).

    Article  Google Scholar 

  28. 28

    Cohen, J., Jones, J., Furtado, J. C. & Tziperman, E. Warm Arctic, cold continents a common pattern related to Arctic sea ice melt, snow advance, and extreme winter weather. Oceanography 26, 152–160 (2013).

    Article  Google Scholar 

  29. 29

    Sun, L., Perlwitz, J. & Hoerling, M. What caused the recent “Warm Arctic, Cold Continents” trend pattern in winter temperatures? Geophys. Res. Lett. 43, 5345–5352 (2016).

    Article  Google Scholar 

  30. 30

    Kug, J. S. et al. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 8, 759–762 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Article  Google Scholar 

  32. 32

    Nash, E. R., Newman, P. A., Rosenfield, J. E. & Schoeberl, M. R. An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. 101, 9471–9478 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (41225018, 41575038). This work is also supported by the Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No. 41521004). We thank S.-W. Son for comments and suggestions. Matlab codes for the linearized barotropic vorticity equation model support provided by J. Shaman and E. Tziperman are highly appreciated. We thank the scientific teams for ECMWF, NASA, Hadley Centre, CM SAF data and CMIP5 multi-model data. We also thank NCAR for providing the WACCM3 model.

Author information

Affiliations

Authors

Contributions

J.Z. and W.T. contributed to writing the paper, design of the numerical experiments and data analysis. M.P.C. contributed to the discussion and writing the paper. F.X. contributed to the discussion and design of the numerical experiments. J.H. contributed to the data analysis. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wenshou Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5562 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tian, W., Chipperfield, M. et al. Persistent shift of the Arctic polar vortex towards the Eurasian continent in recent decades. Nature Clim Change 6, 1094–1099 (2016). https://doi.org/10.1038/nclimate3136

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing