Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phylogenetic approaches reveal biodiversity threats under climate change

Abstract

Predicting the consequences of climate change for biodiversity is critical to conservation efforts1,2,3. Extensive range losses have been predicted for thousands of individual species4, but less is known about how climate change might impact whole clades1 and landscape-scale patterns of biodiversity5. Here, we show that climate change scenarios imply significant changes in phylogenetic diversity and phylogenetic endemism at a continental scale in Australia using the hyper-diverse clade of eucalypts. We predict that within the next 60 years the vast majority of species distributions (91%) across Australia will shrink in size (on average by 51%) and shift south on the basis of projected suitable climatic space. Geographic areas currently with high phylogenetic diversity and endemism are predicted to change substantially in future climate scenarios. Approximately 90% of the current areas with concentrations of palaeo-endemism6 (that is, places with old evolutionary diversity) are predicted to disappear or shift their location. These findings show that climate change threatens whole clades of the phylogenetic tree, and that the outlined approach can be used to forecast areas of biodiversity losses and continental-scale impacts of climate change.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Variation in the predicted distribution of the suitable climate space of 657 Australian eucalypt species from 2014 to 2085.
Figure 2: Areas of phylogenetic endemism using categorical analysis of neo- and palaeo-endemism (CANAPE) for 657 species of eucalypts in Australia for projected climate change scenarios at 2014 and 2085.
Figure 3: Effects of projected climate change scenarios, between 2014 and 2085, on species of eucalypts found in current areas of palaeo-endemism across Australia.

References

  1. Thuiller, W. et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).

    Article  CAS  Google Scholar 

  2. Araujo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).

    Article  Google Scholar 

  3. Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).

    Article  CAS  Google Scholar 

  4. Hof, C., Araujo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 22–29 (2011).

    Article  Google Scholar 

  5. Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article  Google Scholar 

  6. Mishler, B. D. et al. Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nat. Commun. 5, 4473 (2014).

    Article  CAS  Google Scholar 

  7. Faith, D. P. & Richards, Z. T. Climate change impacts on the tree of life: changes in phylogenetic diversity illustrated for Acropoda corals. Biology 1, 906–932 (2012).

    Article  Google Scholar 

  8. Loyola, R. D. et al. Clade-specific consequences of climate change to amphibians in Atlantic Forest protected areas. Ecography 37, 65–72 (2014).

    Article  Google Scholar 

  9. Faith, D. P. & Pollock, L. J. Phylogenetic diversity and the sustainable use of biodiversity. in Applied Ecology and Human Dimensions in Biological Conservation (eds Verdade, L. M. et al.) 35–52 (Springer, 2014).

    Chapter  Google Scholar 

  10. Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Cons. 61, 1–10 (1992).

    Article  Google Scholar 

  11. Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human-well-being. Curr. Opin. Environ. Sustain. 2, 66–74 (2010).

    Article  Google Scholar 

  12. Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010).

    Article  Google Scholar 

  13. Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, S. C. & Cook, L. G. Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 18, 4061–4072 (2009).

    Article  Google Scholar 

  14. González-Orozco, C. E., Thornhill, A. H., Knerr, N., Laffan, S. & Miller, J. T. Biogeographical regions and phytogeography of the eucalypts. Diversity Distrib. 20, 46–58 (2014).

    Article  Google Scholar 

  15. Wilson, P. G. in Myrtaceae. The Families and Genera of Vascular Plants. Volume X. Flowering Plants Eudicots: Sapindales, Cucurbitales, Myrtaceae (ed. Kubitzki, K.) 212–271 (Springer, 2011).

    Google Scholar 

  16. Thornhill, A. H., Ho, S. Y. W., Külheim, C. & Crisp, M. D. Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol. Phylogenet. Evol. 93, 29–43 (2015).

    Article  Google Scholar 

  17. Thornhill, A. H., Popple, L. W., Carter, R. J., Ho, S. Y. W. & Crisp, M. D. Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae. Mol. Phylogen. Evolut. 63, 15–27 (2012).

    Article  Google Scholar 

  18. Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. J. S. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Commun. 2, 1–8 (2011).

    Article  Google Scholar 

  19. Bayly, M. J. et al. Chloroplast genome analysis of Australian eucalypts-Eucalyptus Corymbia Angophora Allosyncarpia and Stockwellia (Myrtaceae). Mol. Phylogen. Evolut. 69, 704–716 (2013).

    Article  CAS  Google Scholar 

  20. Booth, T. H. et al. Native forest and climate change: lessons from eucalypts. Forest Ecol. Manage. 347, 18–29 (2015).

    Article  Google Scholar 

  21. Hughes, L., Cawsey, E. M. & Westoby, M. Climatic range sizes of Eucalyptus species in relation to future climate change. Glob. Ecol. Biogeogr. Lett. 5, 23–29 (1996).

    Article  Google Scholar 

  22. Butt, N., Pollock, L. J. & McAlpine, C. A. Eucalypts face increasing climate stress. Ecol. Evolut. 3, 5011–5022 (2013).

    Article  Google Scholar 

  23. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  24. Eiserhardt, W. L., Borchsenius, F., Plum, C. M., Ordoñez, A. & Svening, J.-C. Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol. Lett. 18, 263–272 (2015).

    Article  Google Scholar 

  25. Willis, C. G. et al. Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proc. Natl Acad. Sci. USA 105, 17029–17033 (2008).

    Article  CAS  Google Scholar 

  26. Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).

    Article  CAS  Google Scholar 

  27. Thornhill, A. H. et al. Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J. Biogeogr. http://dx.doi.org/10.1111/jbi.12797 (2016).

  28. Zhang, J., Nielsen, S. E., Stolar, J., Chen, Y. & Thuiller, W. Gains and losses of plant species and phylogenetic diversity for a northern high-latitude region. Diversity Distrib. 21, 1441–1454 (2015).

    Article  Google Scholar 

  29. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  Google Scholar 

  30. Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  Google Scholar 

  31. Euclid v3.0—Eucalypts of Australia Centre for Plant Biodiversity Research, Lucid, Australian Government, CSIRO (2016); https://www.anbg.gov.au/cpbr/cd-keys/euclid3/euclidsample/html/index.htm

  32. Kujala, H., Moilanen, A., Araújo, M. B. & Cabeza, M. Conservation planning with uncertain climate change projections. PLoS ONE 8, e53315 (2013).

    Article  CAS  Google Scholar 

  33. Williams, K. J. et al. Harnessing Continent-Wide Biodiversity Datasets for Prioritising National Conservation Investment CSIRO Ecosystem Sciences, Canberra (A report prepared for the Department of Sustainability, Environment, Water, Population and Communities, Australian Government, Canberra, 2010).

    Google Scholar 

  34. McKenzie, N. J., Jacquier, D. W., Ashton, L. J. & Cresswell, H. P. Estimation of Soil Properties Using the Atlas of Australian Soils (CSIRO, Canberra, 2000).

    Google Scholar 

  35. Elith, J. et al. A statistical explanation of Maxent for ecologists. Diversity Distrib. 17, 43–57 (2011).

    Article  Google Scholar 

  36. Pollock, L. J. et al. Phylogenetic diversity meets conservation policy: small areas are key to preserving eucalypt lineages. Phil. Trans. R Soc. B 370, 1662 (2015).

    Article  Google Scholar 

  37. Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Article  Google Scholar 

  38. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  39. Rambaut, A. Sequence Alignment Editor (Se-Al) v2.0 (2002); http://tree.bio.ed.ac.uk/software/seal

  40. VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    Article  Google Scholar 

  41. Cremer, K. W. Distance of seed dispersal in eucalypts estimated from seed weights. Aust. Forest Res. 7, 225–228 (1977).

    Google Scholar 

  42. Laffan, S. W., Lubarsky, E. & Rosauer, D. F. Biodiverse, a tool for the spatial analysis of biological and related diversity. Ecography 33, 634–647 (2010).

    Article  Google Scholar 

  43. Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity Distrib. 13, 252–264 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Environmental Research Program (NERP) for workshop funding, the Bjarne K Dahl Trust for support, and the ARC grant DP130101141 for supporting the eucalypts phylogenetic work. B.D.M. acknowledges a Visiting Fellowship from the Collaborative Research Network for Murray-Darling Basin Futures, University of Canberra in 2013. S.L. was supported by ARC DECRA DE130100565. This manuscript includes work carried out by J.T.M. while serving at the National Science Foundation. The views expressed in this paper do not necessarily reflect those of the National Science Foundation or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to project conception. C.E.G.-O., L.J.P., A.H.T., N.K., B.G. and S.W.L. conducted analyses. A.H.T., M.D., C.K. and J.T.M. developed the phylogeny. A.H.T., N.K., C.E.G.-O., L.J.P. and N.B. compiled and corrected species spatial data records. C.E.G.-O. wrote the manuscript draft and all authors contributed to interpretation of the results and writing of the final paper.

Corresponding authors

Correspondence to Carlos E. González-Orozco or Bernd Gruber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7044 kb)

Supplementary Information

Supplementary Information (PDF 763 kb)

Supplementary Information

Supplementary Information (PDF 23277 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Orozco, C., Pollock, L., Thornhill, A. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nature Clim Change 6, 1110–1114 (2016). https://doi.org/10.1038/nclimate3126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing