Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular signatures of transgenerational response to ocean acidification in a species of reef fish

Abstract

The impact of ocean acidification on marine ecosystems will depend on species capacity to adapt1,2. Recent studies show that the behaviour of reef fishes is impaired at projected CO2 levels3,4; however, individual variation exists that might promote adaptation. Here, we show a clear signature of parental sensitivity to high CO2 in the brain molecular phenotype of juvenile spiny damselfish, Acanthochromis polyacanthus, primarily driven by circadian rhythm genes. Offspring of CO2-tolerant and CO2-sensitive parents were reared at near-future CO2 (754 μatm) or present-day control levels (414 μatm). By integrating 33 brain transcriptomes and proteomes with a de novo assembled genome we investigate the molecular responses of the fish brain to increased CO2 and the expression of parental tolerance to high CO2 in the offspring molecular phenotype. Exposure to high CO2 resulted in differential regulation of 173 and 62 genes and 109 and 68 proteins in the tolerant and sensitive groups, respectively. Importantly, the majority of differences between offspring of tolerant and sensitive parents occurred in high CO2 conditions. This transgenerational molecular signature suggests that individual variation in CO2 sensitivity could facilitate adaptation of fish populations to ocean acidification.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Sampling design of juvenile fish for molecular analysis of brain transcriptomes and proteomes.
Figure 2: Differential expression of transcripts and proteins for the four different comparisons of parental-sensitivity by CO2 rearing conditions.
Figure 3: Differential regulation of circadian rhythm genes for offspring of tolerant parents at high CO2 condition.

References

  1. Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

    Article  Google Scholar 

  2. Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).

    Article  CAS  Google Scholar 

  3. Munday, P. L., Cheal, A. J., Dixson, D. L., Rummer, J. L. & Fabricius, K. E. Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nature Clim. Change 4, 487–492 (2014).

    Article  CAS  Google Scholar 

  4. Munday, P. L. et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).

    Article  CAS  Google Scholar 

  5. Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  Google Scholar 

  6. Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974–989 (2016).

    Article  Google Scholar 

  7. Clements, J. & Hunt, H. Marine animal behaviour in a high CO2 ocean. Mar. Ecol. Prog. Ser. 536, 259–279 (2015).

    Article  CAS  Google Scholar 

  8. Dixson, D. L., Jennings, A. R., Atema, J. & Munday, P. L. Odor tracking in sharks is reduced under future ocean acidification conditions. Glob. Change Biol. 21, 1454–1462 (2015).

    Article  Google Scholar 

  9. Lai, F., Jutfelt, F. & Nilsson, G. E. Altered neurotransmitter function in CO2-exposed stickleback (Gasterosteus aculeatus): a temperate model species for ocean acidification research. Conserv. Physiol. 3, cov018 (2015).

    Article  Google Scholar 

  10. Ou, M. et al. Responses of pink salmon to CO2-induced aquatic acidification. Nature Clim. Change 5, 950–955 (2015).

    Article  CAS  Google Scholar 

  11. Holmes, T. H. & McCormick, M. I. Smell, learn and live: the role of chemical alarm cues in predator learning during early life history in a marine fish. Behav. Process. 83, 299–305 (2010).

    Article  Google Scholar 

  12. Welch, M. J., Watson, S.-A., Welsh, J. Q., McCormick, M. I. & Munday, P. L. Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Clim. Change 4, 1086–1089 (2014).

    Article  CAS  Google Scholar 

  13. Ferrari, M. C. O. et al. Intrageneric variation in antipredator responses of coral reef fishes affected by ocean acidification: implications for climate change projections on marine communities. Glob. Change Biol. 17, 2980–2986 (2011).

    Article  Google Scholar 

  14. Chivers, D. P. et al. Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Glob. Change Biol. 20, 515–522 (2014).

    Article  Google Scholar 

  15. Munday, P. L. et al. Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidif. 1, 1–5 (2012).

    Article  Google Scholar 

  16. Heuer, R. M. & Grosell, M. Physiological impacts of elevated carbon dioxide and ocean acidification on fish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1061–R1084 (2014).

    Article  CAS  Google Scholar 

  17. Nilsson, G. E. et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change 2, 201–204 (2012).

    Article  CAS  Google Scholar 

  18. Polakof, S., Panserat, S., Soengas, J. L. & Moon, T. W. Glucose metabolism in fish: a review. J. Comp. Physiol. B 182, 1015–1045 (2012).

    Article  CAS  Google Scholar 

  19. Li, Y. et al. Upregulation of cytosolic phosphoenolpyruvate carboxykinase is a critical metabolic event in melanoma cells that repopulate tumors. Cancer Res. 75, 1191–1196 (2015).

    Article  CAS  Google Scholar 

  20. Villeneuve, L. et al. Altered gene expression in the brain and ovaries of zebrafish (Danio rerio) exposed to the aromatase inhibitor fadrozole: microarray analysis and hypothesis generation. Environ. Toxicol. Chem. 28, 1767–1782 (2009).

    Article  CAS  Google Scholar 

  21. Harshman, S. W., Young, N. L., Parthun, M. R. & Freitas, M. A. H1 histones: current perspectives and challenges. Nucleic Acids Res. 41, 9593–9609 (2013).

    Article  CAS  Google Scholar 

  22. Kim, S., You, S. & Hwang, D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nature Rev. Cancer 11, 708–718 (2011).

    Article  CAS  Google Scholar 

  23. Pan, T. Adaptive translation as a mechanism of stress response and adaptation. Annu. Rev. Genet. 47, 121–137 (2013).

    Article  CAS  Google Scholar 

  24. Haschemeyer, A. E. V. Multiple aminoacyl-tRNA synthetases (translases) in temperature acclimation of eurythermal fish. J. Exp. Mar. Biol. Ecol. 87, 191–198 (1985).

    Article  CAS  Google Scholar 

  25. Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).

    Article  CAS  Google Scholar 

  26. Balment, R. J., Lu, W., Weybourne, E. & Warne, J. M. Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. Gen. Comp. Endocrinol. 147, 9–16 (2006).

    Article  CAS  Google Scholar 

  27. Dmitriev, A. V. & Mangel, S. C. A circadian clock regulates the pH of the fish retina. J. Physiol. 522, 77–82 (2000).

    Article  CAS  Google Scholar 

  28. Peterson, M. S. & Gilmore, R. G. Hematocrit, osmolality, and ion concentration in fishes: consideration of circadian patterns in the experimental design. J. Exp. Mar. Biol. Ecol. 121, 73–78 (1988).

    Article  Google Scholar 

  29. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96, 271–290 (1999).

    Article  CAS  Google Scholar 

  30. Zhang, E. E. & Kay, S. A. Clocks not winding down: unravelling circadian networks. Nature Rev. Mol. Cell Biol. 11, 764–776 (2010).

    Article  CAS  Google Scholar 

  31. López-Patiño, M. A., Rodríguez-Illamola, A., Gesto, M., Soengas, J. L. & Míguez, J. M. Changes in plasma melatonin levels and pineal organ melatonin synthesis following acclimation of rainbow trout (Oncorhynchus mykiss) to different water salinities. J. Exp. Biol. 214, 928–936 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Australian Research Council (ARC) and the ARC Centre of Excellence for Coral Reef Studies (P.L.M.), the Office of Competitive Research Funds OCRF-2014-CRG3-62140408 from the King Abdullah University of Science and Technology (T.R., M.L.B., P.L.M., T.Ryu, C.S.), and the University of Oslo (G.E.N.). This project was completed under James Cook University (JCU) ethics permit A1828. We thank the Marine and Aquaculture Research Facilities Unit (JCU), Integrative Systems Biology Laboratory (KAUST), and Biosciences Core Laboratory (KAUST) for support and assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.J.W. and P.L.M. designed and managed the fish rearing experiments. M.J.W. performed the adult fish behavioural phenotyping. C.S. prepared the samples for RNA sequencing, and together with H.Z. protein samples for mass spectrometry. T.Ryu performed the genome assembly and gene annotation and wrote the corresponding part. C.S. analysed transcriptome expression data, and performed quantitative real-time PCR expression validation and variant analysis. C.S. analysed mass spectrometry data and integrated the data sets. G.E.N. assisted in interpreting the expression data. C.S., P.L.M., T.Ravasi and G.E.N. wrote the paper and all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Philip L. Munday or Timothy Ravasi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1298 kb)

Supplementary Information

Supplementary Information (XLSX 189 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schunter, C., Welch, M., Ryu, T. et al. Molecular signatures of transgenerational response to ocean acidification in a species of reef fish. Nature Clim Change 6, 1014–1018 (2016). https://doi.org/10.1038/nclimate3087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing