Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predicting and mitigating future biodiversity loss using long-term ecological proxies

Abstract

Uses of long-term ecological proxies in strategies for mitigating future biodiversity loss are too limited in scope. Recent advances in geochronological dating, palaeoclimate reconstructions and molecular techniques for inferring population dynamics offer exciting new prospects for using retrospective knowledge to better forecast and manage ecological outcomes in the face of global change. Opportunities include using fossils, genes and computational models to identify ecological traits that caused species to be differentially prone to regional and range-wide extinction, test if threatened-species assessment approaches work and locate habitats that support stable ecosystems in the face of shifting climates. These long-term retrospective analyses will improve efforts to predict the likely effects of future climate and other environmental change on biodiversity, and target conservation management resources most effectively.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Approaches for integrating long-term historical knowledge into ecological models.
Figure 2: Change in mean annual temperature in the UK for the past 21 kyr and for the twentieth and twenty-first century.
Figure 3: Validating predictions from range dynamics models using fossil and genetic data.
Figure 4: Identifying the traits most likely to influence extinction risk and range dynamics using a robust coverage of a multi-dimensional parameter space.

References

  1. Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58 (2011).

    Article  CAS  Google Scholar 

  2. Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  Google Scholar 

  3. Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article  CAS  Google Scholar 

  4. Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil. Trans. R. Soc. B 365, 2093–2106 (2010).

    Article  Google Scholar 

  5. Fordham, D. A. et al. Adapted conservation measures are required to save the Iberian lynx in a changing climate. Nat. Clim. Change 3, 899–903 (2013).

    Article  Google Scholar 

  6. Jackson, S. T. & Blois, J. L. Community ecology in a changing environment: perspectives from the Quaternary. Proc. Natl Acad. Sci. USA 112, 4915–4921 (2015).

    Article  CAS  Google Scholar 

  7. Dietl, G. P. & Flessa, K. W. Conservation paleobiology: putting the dead to work. Trends Ecol. Evol. 26, 30–37 (2011).

    Article  Google Scholar 

  8. Davies, A. L. & Bunting, M. J. Applications of palaeoecology in conservation. Open Ecol. J. 3, 54–67 (2010).

    Article  Google Scholar 

  9. Gill, J. L. et al. A 2.5-million-year perspective on coarse-filter strategies for conserving nature's stage. Conserv. Biol. 29, 640–648 (2015).

    Article  Google Scholar 

  10. Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

    Article  CAS  Google Scholar 

  11. Harnik, P. G. et al. Extinctions in ancient and modern seas. Trends Ecol. Evol. 27, 608–617 (2012).

    Article  Google Scholar 

  12. Stigall, A. L. & Lieberman, B. S. Quantitative palaeobiogeography: GIS, phylogenetic biogeographical analysis, and conservation insights. J. Biogeogr. 33, 2051–2060 (2006).

    Article  Google Scholar 

  13. Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).

    Article  Google Scholar 

  14. Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    Article  CAS  Google Scholar 

  15. Carnaval, A. C., Hickerson, M. J., Haddad, C. F. B., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323, 785–789 (2009).

    Article  CAS  Google Scholar 

  16. Roberts, D. R. & Hamann, A. Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. Glob. Ecol. Biogeogr. 21, 121–133 (2012).

    Article  Google Scholar 

  17. Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    Article  CAS  Google Scholar 

  18. Fordham, D. A., Brook, B. W., Moritz, C. & Nogués-Bravo, D. Better forecasts of range dynamics using genetic data. Trends Ecol. Evol. 29, 436–443 (2014).

    Article  Google Scholar 

  19. Schurr, F. M. et al. How to understand species' niches and range dynamics: a demographic research agenda for biogeography. J. Biogeogr. 39, 2146–2162 (2012).

    Article  Google Scholar 

  20. Thuiller, W. et al. A road map for integrating eco-evolutionary processes into biodiversity models. Ecol. Lett. 16, 94–105 (2013).

    Article  Google Scholar 

  21. Fordham, D. A., Akçakaya, H. R., Araújo, M. B., Keith, D. A. & Brook, B. W. Tools for integrating range change, extinction risk and climate change information into conservation management. Ecography 36, 956–964 (2013).

    Article  Google Scholar 

  22. Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26, 194–220 (2000).

    Article  Google Scholar 

  23. Johnson, K. G. et al. Climate change and biosphere response: unlocking the collections vault. Bioscience 61, 147–153 (2011).

    Article  Google Scholar 

  24. Araújo, M. B., Pearson, R. G., Thuiller, W. & Erhard, M. Validation of species–climate impact models under climate change. Glob. Change Biol. 11, 1504–1513 (2005).

    Article  Google Scholar 

  25. Illán, J. G. et al. Precipitation and winter temperature predict long-term range-scale abundance changes in western North American birds. Glob. Change Biol. 20, 3351–3364 (2014).

    Article  Google Scholar 

  26. Lyman, R. L. A warrant for applied palaeozoology. Biol. Rev. 87, 513–525 (2012).

    Article  Google Scholar 

  27. Araújo, M. B. & Rahbek, C. How does climate change affect biodiversity? Science 313, 1396–1397 (2006).

    Article  Google Scholar 

  28. Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    Article  Google Scholar 

  29. Trondman, A. K. et al. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. Glob. Change Biol. 21, 676–697 (2015).

    Article  Google Scholar 

  30. Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. & Worthy, T. H. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc. Natl Acad. Sci. USA 105, 7676–7680 (2008).

    Article  CAS  Google Scholar 

  31. Ramsey, C. B., Dee, M., Lee, S., Nakagawa, T. & Staff, R. A. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52, 953–961 (2010).

    Article  Google Scholar 

  32. Ramsey, C. B., Higham, T. & Leach, P. Towards high-precision AMS: progress and limitations. Radiocarbon 46, 17–24 (2004).

    Article  CAS  Google Scholar 

  33. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325, 310–314 (2009).

    Article  CAS  Google Scholar 

  34. Hofreiter, M. et al. The future of ancient DNA: technical advances and conceptual shifts. BioEssays 37, 284–293 (2015).

    Article  Google Scholar 

  35. Petchey, F. et al. High-resolution radiocarbon dating of marine materials in archaeological contexts: radiocarbon marine reservoir variability between Anadara, Gafrarium, Batissa, Polymesoda spp. and Echinoidea at Caution Bay, southern coastal Papua New Guinea. Archaeol. Anthropol. Sci. 5, 69–80 (2013).

    Article  Google Scholar 

  36. Orlando, L. & Cooper, A. Using ancient DNA to understand evolutionary and ecological processes. Annu. Rev. Ecol. Evol. Syst. 45, 573–598 (2014).

    Article  Google Scholar 

  37. Singarayer, J. S. & Valdes, P. J. High-latitude climate sensitivity to ice-sheet forcing over the last 120 kyr. Quat. Sci. Rev. 29, 43–55 (2010).

    Article  Google Scholar 

  38. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Article  CAS  Google Scholar 

  39. Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).

    Article  CAS  Google Scholar 

  40. Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).

    Article  CAS  Google Scholar 

  41. Pyke, G. H. & Ehrlich, P. R. Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol. Rev. 85, 247–266 (2010).

    Article  Google Scholar 

  42. Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).

    Article  Google Scholar 

  43. Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species ranges. Ecol. Lett. 12, 334–350 (2009).

    Article  Google Scholar 

  44. Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    Article  Google Scholar 

  45. Smith, A. B. et al. Evaluation of species distribution models by resampling of sites surveyed a century ago by Joseph Grinnell. Ecography 36, 1017–1031 (2013).

    Article  Google Scholar 

  46. Dobrowski, S. Z. et al. Modeling plant ranges over 75 years of climate change in California, USA: temporal transferability and species traits. Ecol. Monogr. 81, 241–257 (2011).

    Article  Google Scholar 

  47. Pearman, P. B. et al. Prediction of plant species distributions across six millennia. Ecol. Lett. 11, 357–369 (2008).

    Article  Google Scholar 

  48. Varela, S., Lobo, J. M. & Hortal, J. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463 (2011).

    Article  Google Scholar 

  49. Veloz, S. D. et al. No-analog climates and shifting realized niches during the Late Quaternary: implications for 21st-century predictions by species distribution models. Glob. Change Biol. 18, 1698–1713 (2012).

    Article  Google Scholar 

  50. Mouquet, N. et al. Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).

    Article  Google Scholar 

  51. Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).

    Article  CAS  Google Scholar 

  52. Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).

    Article  CAS  Google Scholar 

  53. Metcalf, J. L. et al. Integrating multiple lines of evidence into historical biogeography hypothesis testing: a Bison bison case study. Proc. R. Soc. B 281, 20132782 (2014).

    Article  Google Scholar 

  54. He, Q., Edwards, D. L. & Knowles, L. L. Integrative testing of how environments from the past to the present shape genetic structure across landscapes. Evolution 67, 3386–3402 (2013).

    Article  Google Scholar 

  55. Brown, J. L. & Knowles, L. L. Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American pika. Mol. Ecol. 21, 3757–3775 (2012).

    Article  Google Scholar 

  56. Wells, K. et al. Timing and severity of immunizing diseases in rabbits is controlled by seasonal matching of host and pathogen dynamics. J. R. Soc. Interface 12, 20141184 (2015).

    Article  Google Scholar 

  57. Prowse, T. A. A., Johnson, C. N., Bradshaw, C. J. A. & Brook, B. W. An ecological regime shift resulting from disrupted predator–prey interactions in Holocene Australia. Ecology 95, 693–702 (2013).

    Article  Google Scholar 

  58. Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline? Science 341, 504–508 (2013).

    Article  CAS  Google Scholar 

  59. Botkin, D. B. et al. Forecasting the effects of global warming on biodiversity. BioScience 57, 227–236 (2007).

    Article  Google Scholar 

  60. Bremner, J. Species' traits and ecological functioning in marine conservation and management. J. Exp. Mar. Biol. Ecol. 366, 37–47 (2008).

    Article  Google Scholar 

  61. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    Article  CAS  Google Scholar 

  62. Foden, W. B. et al. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013).

    Article  CAS  Google Scholar 

  63. Garcia, R. A. et al. Matching species traits to projected threats and opportunities from climate change. J. Biogeogr. 41, 724–735 (2014).

    Article  Google Scholar 

  64. Jiguet, F., Gadot, A.-S., Julliard, R., Newson, S. E. & Couvet, D. Climate envelope, life history traits and the resilience of birds facing global change. Glob. Change Biol. 13, 1672–1684 (2007).

    Article  Google Scholar 

  65. Massot, M., Clobert, J. & Ferrière, R. Climate warming, dispersal inhibition and extinction risk. Glob. Change Biol. 14, 461–469 (2008).

    Article  Google Scholar 

  66. Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).

    Article  Google Scholar 

  67. Alroy, J. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).

    Article  CAS  Google Scholar 

  68. Bradshaw, C. J. A. et al. Predictors of contraction and expansion of area of occupancy for British birds. Proc. R. Soc. B 281, 20140744 (2014).

    Article  Google Scholar 

  69. Dunne, J. A., Labandeira, C. C. & Williams, R. J. Highly resolved Early Eocene food webs show development of modern trophic structure after the end-Cretaceous extinction. Proc. R. Soc. B 281, 20133280 (2014).

    Article  Google Scholar 

  70. Yeakel, J. D. et al. Collapse of an ecological network in ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).

    Article  CAS  Google Scholar 

  71. IUCN Red List of Threatened Species (IUCN, 2010); www.iucnredlist.org

  72. Mace, G. M. et al. Quantification of extinction risk: IUCN's system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    Article  Google Scholar 

  73. Akçakaya, H. R., Butchart, S. H. M., Watson, J. E. M. & Pearson, R. G. Preventing species extinctions resulting from climate change. Nat. Clim. Change 4, 1048–1049 (2014).

    Article  Google Scholar 

  74. Stanton, J. C., Shoemaker, K. T., Pearson, R. G. & Akçakaya, H. R. Warning times for species extinctions due to climate change. Glob. Change Biol. 21, 1066–1077 (2015).

    Article  Google Scholar 

  75. Stanton, J. C. Present-day risk assessment would have predicted the extinction of the passenger pigeon (Ectopistes migratorius). Biol. Conserv. 180, 11–20 (2014).

    Article  Google Scholar 

  76. Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

    Article  CAS  Google Scholar 

  77. Keppel, G. & Wardell-Johnson, G. W. Refugia: keys to climate change management. Glob. Change Biol. 18, 2389–2391 (2012).

    Article  Google Scholar 

  78. Davis, J., Pavlova, A., Thompson, R. & Sunnucks, P. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Glob. Change Biol. 19, 1970–1984 (2013).

    Article  Google Scholar 

  79. Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).

    Article  Google Scholar 

  80. Yannic, G. et al. Genetic diversity in caribou linked to past and future climate change. Nat. Clim. Change 4, 132–137 (2014).

    Article  Google Scholar 

  81. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article  Google Scholar 

  82. Keppel, G. et al. Refugia: identifying and understanding safe havens for biodiversity under climate change. Glob. Ecol. Biogeogr. 21, 393–404 (2012).

    Article  Google Scholar 

  83. Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. New Phytol. 204, 37–54 (2014).

    Article  Google Scholar 

  84. Graham, C. H., VanDerWal, J., Phillips, S. J., Moritz, C. & Williams, S. E. Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33, 1062–1069 (2010).

    Article  Google Scholar 

  85. Ohlemüller, R., Huntley, B., Normand, S. & Svenning, J.-C. Potential source and sink locations for climate-driven species range shifts in Europe since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 21, 152–163 (2012).

    Article  Google Scholar 

  86. Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B 277, 661–671 (2010).

    Article  Google Scholar 

  87. Blois, J. L., Williams, J. W., Grimm, E. C., Jackson, S. T. & Graham, R. W. A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quat. Sci. Rev. 30, 1926–1939 (2011).

    Article  Google Scholar 

  88. Sutherland, C. S., Elston, D. A. & Lambin, X. A demographic, spatially explicit patch occupancy model of metapopulation dynamics and persistence. Ecology 95, 3149–3160 (2014).

    Article  Google Scholar 

  89. Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  90. Uhen, M. D. et al. From card catalogs to computers: databases in vertebrate paleontology. J. Vertebr. Paleontol. 33, 13–28 (2013).

    Article  Google Scholar 

  91. Rodríguez-Rey, M. et al. Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages. Quat. Geochronol. 30A, 69–79 (2015).

    Article  Google Scholar 

  92. Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).

    Article  CAS  Google Scholar 

  93. Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).

    Article  CAS  Google Scholar 

  94. Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097 (2014).

    Article  Google Scholar 

  95. Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article  CAS  Google Scholar 

  96. Alroy, J. A simple Bayesian method of inferring extinction. Paleobiology 40, 584–607 (2014).

    Article  Google Scholar 

  97. Saltré, F. et al. Uncertainties in dating constrain model choice for inferring extinction time from fossil records. Quat. Sci. Rev. 112, 128–137 (2015).

    Article  Google Scholar 

  98. Fordham, D. A., Haythorne, S. & Brook, B. W. Sensitivity Analysis of Range Dynamics Models (SARDM): quantifying the influence of parameter uncertainty on forecasts of extinction risk from global change. Environ. Modell. Softw. 83, 193–197 (2016).

    Article  Google Scholar 

  99. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  100. Fordham, D. A., Wigley, T. M. L., Watts, M. J. & Brook, B. W. Strengthening forecasts of climate change impacts with multi-model ensemble averaged projections using MAGICC/SCENGEN 5.3. Ecography 35, 4–8 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The Australian Research Council (ARC) supported D.A.F., F.S., T.M.L.W and B.W.B. (FT140101192, DP130103842, DP130103261); NSF DEB-1146198 supported H.R.A. B. Otto-Bliesner helped with the climate analysis. D. Nogués-Bravo and J. Gill provided useful ideas and comments.

Author information

Authors and Affiliations

Authors

Contributions

The ideas in this paper are the result of discussions involving all authors. D.A.F. wrote the initial draft of the manuscript and all authors contributed to the writing of the final version of the paper.

Corresponding author

Correspondence to Damien A. Fordham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fordham, D., Akçakaya, H., Alroy, J. et al. Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nature Clim Change 6, 909–916 (2016). https://doi.org/10.1038/nclimate3086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing