Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climate change unlikely to increase malaria burden in West Africa

Abstract

The impact of climate change on malaria transmission has been hotly debated. Recent conclusions have been drawn using relatively simple biological models1,2 and statistical approaches3,4,5, with inconsistent predictions. Consequently, the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5) echoes this uncertainty, with no clear guidance for the impacts of climate change on malaria transmission, yet recognizing a strong association between local climate and malaria6,7. Here, we present results from a decade-long study involving field observations and a sophisticated model simulating village-scale transmission. We drive the malaria model using select climate models that correctly reproduce historical West African climate, and project reduced malaria burden in a western sub-region and insignificant impact in an eastern sub-region. Projected impacts of climate change on malaria transmission in this region are not of serious concern.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study location.
Figure 2: HYDREMATS model.
Figure 3: Projected changes in rainfall, basic reproduction number and malaria prevalence.
Figure 4: Simulated relationships between environmental variables and malaria transmission indices.

Similar content being viewed by others

References

  1. Parham, P. E. & Michael, E. Modelling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2009).

    Article  Google Scholar 

  2. Ermert, V., Fink, A. H., Morse, A. P. & Paeth, H. The impact of regional climate change on malaria risk due to greenhouse forcing and land-use changes in tropical Africa. Environ. Health Perspect. 120, 77–84 (2012).

    Article  Google Scholar 

  3. Rogers, D. J. & Randolph, S. E. The global spread of malaria in a future, warmer world. Science 289, 1763–1766 (2000).

    Article  CAS  Google Scholar 

  4. Peterson, A. T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infectious Diseases 9, 59 (2009).

    Article  Google Scholar 

  5. Tonnang, H. E., Kangalawe, R. Y. & Yanda, P. Z. Predicting and mapping malaria under climate change scenarios: the potential redistribution of malaria vectors in Africa. Malaria J. 9, 111 (2010).

    Article  Google Scholar 

  6. Wallace, D. I., Southworth, B. S., Shi, X., Chipman, J. W. & Githeko, A. K. A comparison of five malaria transmission models: benchmark tests and implications for disease control. Malaria J. 13, 268 (2014).

    Article  Google Scholar 

  7. Smith, K. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  8. Zhou, G., Minakawa, N., Githeko, A. K. & Yan, G. Association between climate variability and malaria epidemics in the East African highlands. Proc. Natl Acad. Sci. USA 101, 2375–2380 (2004).

    Article  CAS  Google Scholar 

  9. Kilian, A. H. D., Langi, P., Talisuna, A. & Kabagambe, G. Rainfall pattern. El Niño and malaria in Uganda. Trans. R. Soc. Trop. Med. Hyg. 93, 22–23 (1999).

    Article  CAS  Google Scholar 

  10. Wijesundera Mde, S. Malaria outbreaks in new foci in Sri Lanka. Parasitol. Today 4, 147–150 (1988).

    Article  Google Scholar 

  11. Detinova, T. S. Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria. Monogr. Ser. World Health Organ. 47, 13–191 (1962).

    CAS  Google Scholar 

  12. Caminade, C. et al. Impact of climate change on global malaria distribution. Proc. Natl Acad. Sci. USA 111, 3286–3291 (2014).

    Article  CAS  Google Scholar 

  13. Tompkins, A. M. & Ermert, V. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malaria J. 12, 65 (2013).

    Article  Google Scholar 

  14. Yamana, T. K. & Eltahir, E. A. B. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 121, 1179–1186 (2013).

    Article  Google Scholar 

  15. World Malaria Report 2014 (World Health Organization, 2014).

  16. Bomblies, A. Modeling the role of rainfall patterns in seasonal malaria transmission. Climatic Change 112, 673–685 (2012).

    Article  Google Scholar 

  17. Minakawa, N., Seda, P. & Yan, G. Influence of host and larval habitat distribution on the abundance of African malaria vectors in western Kenya. Am. J. Trop. Med. Hyg. 67, 32–38 (2002).

    Article  Google Scholar 

  18. Martens, W. J. Health Impacts of Climate Change and Ozone Depletion: an Eco-epidemiological Modelling Approach PhD thesis, Univ. Maastricht (1997).

  19. Bomblies, A., Duchemin, J. B. & Eltahir, E. A. B. Hydrology of malaria: model development and application to a Sahelian village. Water Resour. Res. 44, W12445 (2008).

    Article  Google Scholar 

  20. Yamana, T. K., Bomblies, A., Laminou, I. M., Duchemin, J.-B. & Eltahir, E. A. Linking environmental variability to village-scale malaria transmission using a simple immunity model. Parasites Vectors 6, 226 (2013).

    Article  CAS  Google Scholar 

  21. Bomblies, A., Duchemin, J. B. & Eltahir, E. A. B. A mechanistic approach for accurate simulation of village-scale malaria transmission. Malaria J. 8, 223 (2009).

    Article  Google Scholar 

  22. Gething, P. W. et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malaria J. 10, 1475–2875 (2011).

    Article  Google Scholar 

  23. Molineaux, L. & Gramiccia, G. The Garki Project (World Health Organization, 1980).

    Google Scholar 

  24. Beier, J. C., Killeen, G. F. & Githure, J. I. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am. J. Trop. Med. Hyg. 61, 109–113 (1999).

    Article  CAS  Google Scholar 

  25. Roehrig, R., Bouniol, D., Guichard, F., Hourdin, F. & Redelsperger, J.-L. The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J. Clim. 26, 6471–6505 (2013).

    Article  Google Scholar 

  26. Rodríguez-Fonseca, B. et al. Variability and predictability of West African droughts: a review on the role of sea surface temperature anomalies. J. Clim. 28, 4034–4060 (2015).

    Article  Google Scholar 

  27. Langhorne, J., Ndungu, F. M., Sponaas, A. M. & Marsh, K. Immunity to malaria: more questions than answers. Nature Immunol. 9, 725–732 (2008).

    Article  CAS  Google Scholar 

  28. Worldpop Continental Dataset (Worldpop, 2015); http://www.worldpop.org.uk/data

  29. Lindsay, S. W., Bødker, R., Malima, R., Msangeni, H. A. & Kisinza, W. Effect of 1997–98 EI Niño on highland malaria in Tanzania. Lancet 355, 989–990 (2000).

    Article  CAS  Google Scholar 

  30. Paaijmans, K. P., Wandago, M. O., Githeko, A. K. & Takken, W. Unexpected high losses of Anopheles gambiae larvae due to rainfall. PLoS ONE 2, e1146 (2007).

    Article  Google Scholar 

  31. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  32. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  33. Cook, K. H. & Vizy, E. K. Coupled model simulations of the West African monsoon system: twentieth-and twenty-first-century simulations. J. Clim. 19, 3681–3703 (2006).

    Article  Google Scholar 

  34. Druyan, L. M. Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol. 31, 1415–1424 (2011).

    Article  Google Scholar 

  35. Nicholson, S. E. An overview of African rainfall fluctuations of the last decade. J. Clim. 6, 1463–1466 (1993).

    Article  Google Scholar 

  36. Liepert, B. G. & Lo, F. CMIP5 update of ‘Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models’. Environ. Res. Lett. 8, 029401 (2013).

    Article  Google Scholar 

  37. Le Barbé, L., Lebel, T. & Tapsoba, D. Rainfall variability in West Africa during the years 1950–90. J. Clim. 15, 187–202 (2002).

    Article  Google Scholar 

  38. Sultan, B. et al. Robust features of future climate change impacts on sorghum yields in West Africa. Environ. Res. Lett. 9, 104006 (2014).

    Article  Google Scholar 

  39. Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. 118, 1613–1623 (2013).

    Google Scholar 

  40. Lee, J.-Y. & Wang, B. Future change of global monsoon in the CMIP5. Clim. Dynam. 42, 101–119 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the US National Science Foundation grants EAR-0946280 and EAR-0824398, and the US National Oceanic and Atmospheric Administration Oceans and Human Health Initiative. We thank the Centre de Recherche Médicale et Sanitaire (CERMES) of Niamey, Niger, for logistical support in the field, and J.-B. Duchemin for expert guidance and support in field entomology. We also thank the late A. Spielman and B. Jobin for their contributions to this interdisciplinary study. We thank J. Berta-Thompson for assistance in preparing figures.

Author information

Authors and Affiliations

Authors

Contributions

A.B. led the model development and field campaign in Niger. T.K.Y. conducted the modelling study and climate change analysis and contributed to model development. E.A.B.E. conceived the study, and supervised the design and implementation of the research plan. All authors participated in writing and approved the final version of the manuscript.

Corresponding author

Correspondence to Arne Bomblies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamana, T., Bomblies, A. & Eltahir, E. Climate change unlikely to increase malaria burden in West Africa. Nature Clim Change 6, 1009–1013 (2016). https://doi.org/10.1038/nclimate3085

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3085

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing