Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multi-year persistence of the 2014/15 North Pacific marine heatwave


Between the winters of 2013/14 and 2014/15 during the strong North American drought, the northeast Pacific experienced the largest marine heatwave ever recorded. Here we combine observations with an ensemble of climate model simulations to show that teleconnections between the North Pacific and the weak 2014/2015 El Niño linked the atmospheric forcing patterns of this event. These teleconnection dynamics from the extratropics to the tropics during winter 2013/14, and then back to the extratropics during winter 2014/15, are a key source of multi-year persistence of the North Pacific atmosphere. The corresponding ocean anomalies map onto known patterns of North Pacific decadal variability, specifically the North Pacific Gyre Oscillation (NPGO) in 2014 and the Pacific Decadal Oscillation (PDO) in 2015. A large ensemble of climate model simulations predicts that the winter variance of the NPGO- and PDO-like patterns increases under greenhouse forcing, consistent with other studies suggesting an increase in the atmospheric extremes that lead to drought over North America.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of seasonal NOAA SSTa and NCEP SLPa during 2014 and 2015.
Figure 2: Temporal variability of GOA and ARC patterns.
Figure 3: Lead and lag relationship between SSTa indices for the GOA and ARC patterns.
Figure 4: Climate hypothesis to explain the generation, evolution and persistence of the North Pacific warm anomaly between the winters of 2013/14 and 2014/15.
Figure 5: Fraction of ARC SSTa driven by tropical teleconnections.
Figure 6: Changes in the variance of North Pacific climate patterns associated with the northeast Pacific marine heatwaves.


  1. Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    Article  Google Scholar 

  2. Baxter, S. & Nigam, S. Key role of the North Pacific oscillation-West Pacific pattern in generating the extreme 2013/14 North American winter. J. Clim. 28, 8109–8117 (2015).

    Article  Google Scholar 

  3. Wang, S. Y., Hipps, L., Gillies, R. R. & Yoon, J. H. Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett. 41, 3220–3226 (2014).

    Article  Google Scholar 

  4. Wang, S. Y. S., Huang, W. R. & Yoon, J. H. The North American winter ‘dipole’ and extremes activity: a CMIP5 assessment. Atmos. Sci. Lett. 16, 338–345 (2015).

    Article  Google Scholar 

  5. Yoon, J. H. et al. Increasing water cycle extremes in California in relation to ENSO cycle under global warming. Nature Commun. 6, 6 (2015).

    Google Scholar 

  6. Vimont, D. J., Wallace, J. M. & Battisti, D. S. The seasonal footprinting mechanism in the Pacific: implications for ENSO. J. Clim. 16, 2668–2675 (2003).

    Article  Google Scholar 

  7. Anderson, B. T. Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J. Geophys. Res. 108, 4732 (2003).

    Article  Google Scholar 

  8. Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article  Google Scholar 

  9. Whitney, F. A. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett. 42, 428–431 (2015).

    Article  Google Scholar 

  10. Peterson, W., Bond, N. & Robert, M. The Blob (Part Three): Going, going, gone? PICES Press 24, 46–48 (2016).

    Google Scholar 

  11. Opar, A. Lost at sea: starving birds in a warming world. Audubon Magazine (2015);

  12. 2015 Large whale Unusual Mortality Event in the Western Gulf of Alaska (NOAA, 2016);

  13. 2013–2016 California Sea Lion Unusual Mortality Event in California (NOAA, 2016);

  14. NOAA Fisheries Mobilizes to Gauge Unprecedented West Coast Toxic Algal Bloom (NOAA, 2016);

  15. Hartmann, D. L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42, 1894–1902 (2015).

    Article  Google Scholar 

  16. Seager, R. et al. Causes of the 2011–14 California Drought. J. Clim. 28, 6997–7024 (2015).

    Article  Google Scholar 

  17. Anderson, B. T., Gianotti, D. J. S., Furtado, J. C. & Di Lorenzo, E. A decadal precession of atmospheric pressures over the North Pacific. Geophys. Res. Lett. 43, 3921–3927 (2016).

    Article  Google Scholar 

  18. Di Lorenzo, E. et al. North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, L08607 (2008).

    Article  Google Scholar 

  19. Bond, N. A., Overland, J. E., Spillane, M. & Stabeno, P. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 30, 2183 (2003).

    Article  Google Scholar 

  20. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1079 (1997).

    Article  Google Scholar 

  21. Chhak, K. C., Di Lorenzo, E., Schneider, N. & Cummins, P. F. Forcing of low-frequency ocean variability in the Northeast Pacific. J. Clim. 22, 1255–1276 (2009).

    Article  Google Scholar 

  22. Johnstone, J. A. & Mantua, N. J. Atmospheric controls on northeast Pacific temperature trends and variations, 1900–2012. Proc. Natl Acad. Sci. 111, 14360–14365 (2014).

    Article  CAS  Google Scholar 

  23. Di Lorenzo, E. et al. ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys. Res. Lett. 42, 9440–9448 (2015).

    Article  Google Scholar 

  24. Alexander, M. A., Vimont, D. J., Chang, P. & Scott, J. D. The Impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J. Clim. 23, 2885–2901 (2010).

    Article  Google Scholar 

  25. Anderson, B. T., Perez, R. C. & Karspeck, A. Triggering of El Niño onset through the trade-wind induced charging of the equatorial Pacific. Geophys. Res. Lett. 40, 1212–1216 (2013).

    Article  Google Scholar 

  26. Xie, S. P. A dynamic ocean–atmosphere model of the tropical Atlantic decadal variability. J. Clim. 12, 64–70 (1999).

    Article  Google Scholar 

  27. Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J. Clim. 17, 4143–4158 (2004).

    Article  Google Scholar 

  28. Vimont, D. J. Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean. J. Clim. 23, 5771–5789 (2010).

    Article  Google Scholar 

  29. Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Clim. 15, 2205–2231 (2002).

    Article  Google Scholar 

  30. Newman, M., Compo, G. P. & Alexander, M. A. ENSO-forced variability of the Pacific Decadal Oscillation. J. Clim. 16, 3853–3857 (2003).

    Article  Google Scholar 

  31. Schneider, N. & Cornuelle, B. D. The forcing of the Pacific Decadal Oscillation. J. Clim. 18, 4355–4373 (2005).

    Article  Google Scholar 

  32. Sydeman, W. J., Santora, J. A., Thompson, S. A., Marinovic, B. & Di Lorenzo, E. Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California. Glob. Change Biol. 19, 1662–1675 (2013).

    Article  Google Scholar 

  33. Weller, E. et al. Human contribution to the 2014 record high sea surface temperatures over the western tropical and northeast Pacific Ocean [in “Explaining Extremes of 2014 from a Climate Perspective”]. Bull. Am. Meteorol. Soc. 96, S100–S104 (2015).

    Article  Google Scholar 

  34. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  35. Kalnay et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–470 (1996).

    Article  Google Scholar 

  36. Molteni, F. Atmospheric simulations using a GCM with simplified physical parametrizations. I: model climatology and variability in multi-decadal experiments. Clim. Dynam. 20, 175–191 (2003).

    Article  Google Scholar 

  37. Bracco, A., Kucharski, F., Kallummal, R. & Molteni, F. Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles. Clim. Dynam. 23, 659–678 (2004).

    Article  Google Scholar 

  38. Di Lorenzo, E. et al. Central Pacific El Nino and decadal climate change in the North Pacific Ocean. Nature Geosci. 3, 762–765 (2010).

    Article  CAS  Google Scholar 

  39. Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).

    Article  Google Scholar 

Download references


We acknowledge the support of the NSF-OCE 1356924, NSF-OCE 1419292 and NSF CCE-LTER. We also thank N. Schneider for feedback and discussion provided.

Author information

Authors and Affiliations



E.D.L. and N.M. envisioned and wrote the paper. E.D.L. designed and executed the analyses.

Corresponding author

Correspondence to Emanuele Di Lorenzo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1498 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Lorenzo, E., Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nature Clim Change 6, 1042–1047 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing