Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown


The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments1,2,3,4 show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols5,6. The prevailing view is that this negative PDO occurred through internal variability7,8,9,10,11. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time series of 15-year trends (°C per decade) in global mean near-surface temperature.
Figure 2: Near-surface temperature trends for the 15-year period 1998 to 2012.
Figure 3: Anthropogenic aerosol impacts on atmospheric circulation trends for the 15-year period 1998 to 2012.
Figure 4: Influence of sulfate aerosols on the Aleutian Low.


  1. 1

    Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    CAS  Article  Google Scholar 

  2. 2

    England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  3. 3

    Watanabe, M. et al. Contribution of natural decadal variability to global warming acceleration and hiatus. Nature Clim. Change 4, 893–897 (2014).

    Article  Google Scholar 

  4. 4

    Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nature Clim. Change 4, 911–916 (2014).

    Article  Google Scholar 

  5. 5

    Schmidt, G. A., Shindell, D. T. & Tsigaridis, K. Reconciling warming trends. Nature Geosci. 7, 158–160 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nature Geosci. 7, 651–656 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  8. 8

    Risbey, J. S. et al. Well-estimated global surface warming in climate projections selected for ENSO phase. Nature Clim. Change 4, 835–840 (2014).

    Article  Google Scholar 

  9. 9

    Marotzke, J. & Forster, P. M. Forcing, feedback and internal variability in global temperature trends. Nature 517, 565–570 (2015).

    CAS  Article  Google Scholar 

  10. 10

    Roberts, C. D., Palmer, M. D., McNeall, D. & Collins, M. Quantifying the likelihood of a continued hiatus in global warming. Nature Clim. Change 5, 337–342 (2015).

    Article  Google Scholar 

  11. 11

    Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nature Clim. Change 5, 555–559 (2015).

    Article  Google Scholar 

  12. 12

    Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185–189 (2014).

    CAS  Article  Google Scholar 

  14. 14

    McGregor, S. et al. Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  15. 15

    Klimont, Z., Smith, S. J. & Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions. Environ. Res. Lett. 8, 014003 (2013).

    Article  Google Scholar 

  16. 16

    Trenberth, K. E. & Hurrell, J. W. Decadal atmosphere-ocean variations in the Pacific. Clim. Dynam. 9, 303–319 (1994).

    Article  Google Scholar 

  17. 17

    Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Bollasina, M. A., Ming, Y., Ramaswamy, V., Schwarzkopf, M. D. & Naik, V. Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian monsoon. Geophys. Res. Lett. 41, 680–687 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Ming, Y., Ramaswamy, V. & Chen, G. A model investigation of aerosol-induced changes in boreal winter extratropical circulation. J. Clim. 24, 6077–6091 (2011).

    Article  Google Scholar 

  20. 20

    Lewinschal, A., Ekman, A. M. L. & Krnich, H. The role of precipitation in aerosol-induced changes in northern hemisphere wintertime stationary waves. Clim. Dynam. 41, 647–661 (2012).

    Article  Google Scholar 

  21. 21

    Yeh, S.-W. et al. Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in China in a coupled general circulation model. J. Geophys. Res. 118, 1261–1270 (2013).

    Google Scholar 

  22. 22

    Boo, K.-O. et al. Influence of aerosols in multidecadal SST variability simulations over the North Pacific. J. Geophys. Res. 120, 517–531 (2015).

    Article  Google Scholar 

  23. 23

    Maher, N., McGregor, S., England, M. H. & Gupta, A. S. Effects of volcanism on tropical variability. Geophys. Res. Lett. 42, 6024–6033 (2015).

    Article  Google Scholar 

  24. 24

    Allen, R. J., Norris, J. R. & Kovilakam, M. Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width. Nature Geosci. 7, 270–274 (2014).

    CAS  Article  Google Scholar 

  25. 25

    Dong, L., Zhou, T. & Chen, X. Changes of Pacific decadal variability in the twentieth century driven by internal variability, greenhouse gases, and aerosols. Geophys. Res. Lett. 41, 8570–8577 (2014).

    Article  Google Scholar 

  26. 26

    Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B. & Phipps, S. J. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013).

    Article  Google Scholar 

  27. 27

    Lehner, F., Schurer, A. P., Hegerl, G. C., Deser, C. & Frolicher, T. L. The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophys. Res. Lett. 43, 2851–2858 (2016).

    Article  Google Scholar 

  28. 28

    Wilcox, L. J., Highwood, E. J., Booth, B. B. B. & Carslaw, K. S. Quantifying sources of inter-model diversity in the cloud albedo effect. Geophys. Res. Lett. 42, 1568–1575 (2015).

    Article  Google Scholar 

  29. 29

    Murphy, D. M. Little net clear-sky radiative forcing from recent regional redistribution of aerosols. Nature Geosci. 6, 258–262 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl Acad. Sci. USA 108, 11790–11793 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  32. 32

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Google Scholar 

  33. 33

    Allan, R. J. & Ansell, T. J. A new globally complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2003. J. Clim. 19, 5816–5842 (2006).

    Article  Google Scholar 

  34. 34

    Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Article  Google Scholar 

  35. 35

    Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting I: estimation theory. Clim. Dynam. 21, 477–491 (2003).

    Article  Google Scholar 

Download references


This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101), and the EU FP7 SPECS project. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model outputs.

Author information




D.M.S. led the analysis and writing, with suggestions and comments from all authors. G.S.J. guided the detection and attribution analysis.

Corresponding author

Correspondence to Doug M. Smith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2564 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, D., Booth, B., Dunstone, N. et al. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown. Nature Clim Change 6, 936–940 (2016).

Download citation

Further reading


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing