Mapping the climate change challenge


Discussions on a long-term global goal to limit climate change, in the form of an upper limit to warming, were only partially resolved at the United Nations Framework Convention on Climate Change negotiations in Paris, 2015. Such a political agreement must be informed by scientific knowledge. One way to communicate the costs and benefits of policies is through a mapping that systematically explores the consequences of different choices. Such a multi-disciplinary effort based on the analysis of a set of scenarios helped structure the IPCC AR5 Synthesis Report. This Perspective summarizes this approach, reviews its strengths and limitations, and discusses how decision-makers can use its results in practice. It also identifies research needs that can facilitate integrated analysis of climate change and help better inform policy-makers and the public.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The mapping of the relationship between risks from climate change, temperature change, cumulative CO2 emissions, and annual GHG emissions changes by 2050 and 2100.


  1. 1

    IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2014).

  2. 2

    Knutti, R., Rogelj, J., Sedláček, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nature Geosci. 9, 13–18 (2016).

    CAS  Article  Google Scholar 

  3. 3

    Edenhofer, O. & Minx, J. Mapmakers and navigators, facts and values. Science 345, 37–38 (2014).

    Article  Google Scholar 

  4. 4

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

  5. 5

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  6. 6

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  7. 7

    Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Clim. Change 6, 360–369 (2016).

    Article  Google Scholar 

  8. 8

    Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  9. 9

    Ha-Duong, M., Grubb, M. J. & Hourcade, J.-C. Influence of socioeconomic inertia and uncertainty on optimal CO2-emission abatement. Nature 390, 270–273 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Lempert, R. J. & Schlesinger, M. E. Robust strategies for abating climate change. Climatic Change 45, 387–401 (2000).

    Article  Google Scholar 

  11. 11

    Yohe, G., Andronova, N. & Schlesinger, M. To hedge or not against an uncertain climate future? Science 306, 416–417 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  13. 13

    van Vuuren, D. P. & Riahi, K. The relationship between short-term emissions and long-term concentration targets. Climatic Change 104, 793–801 (2010).

    Article  Google Scholar 

  14. 14

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nature Clim. Change 6, 42–50 (2016).

    CAS  Article  Google Scholar 

  15. 15

    Williamson, P. Emissions reduction: scrutinize CO2 removal methods. Nature 530, 153–155 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Fawcett, A. A. et al. Can Paris pledges avert severe climate change? Science 350, 1168–1169 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Otto, F. E. L., Frame, D. J., Otto, A. & Allen, M. R. Embracing uncertainty in climate change policy. Nature Clim. Change 5, 917–920 (2015).

    Article  Google Scholar 

  18. 18

    Kriegler, E. et al. Introduction to the AMPERE model intercomparison studies on the economics of climate stabilization. Technol. Forecast. Soc. 90, 1–7 (2015).

    Article  Google Scholar 

  19. 19

    Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 34033 (2013).

    Article  Google Scholar 

  20. 20

    Rogelj, J., McCollum, D. L., O'Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nature Clim. Change 3, 405–412 (2013).

    CAS  Article  Google Scholar 

  21. 21

    von Stechow, C., Minx, J. C. & Riahi, K. 2 °C and the sustainable development goals: united they stand, divided they fall? Environ. Res. Lett. 11, 034022 (2015).

    Article  Google Scholar 

  22. 22

    Guivarch, C. & Hallegatte, S. 2C or not 2C? Glob. Environ. Change 23, 179–192 (2013).

    Article  Google Scholar 

  23. 23

    Pfister, P. L. & Stocker, T. F. Earth system commitments due to delayed mitigation. Environ. Res. Lett. 11, 14010 (2016).

    Article  Google Scholar 

  24. 24

    Stocker, T. F. The closing door of climate targets. Science 339, 280–282 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Rogelj, J. et al. Disentangling the effects of CO2 and short-lived climate forcer mitigation. Proc. Natl Acad. Sci. USA 111, 16325–16330 (2014).

    CAS  Article  Google Scholar 

  26. 26

    van Vuuren, D. P., Weyant, J. & de la Chesnaye, F. Multi-gas scenarios to stabilize radiative forcing. Energ. Econ. 28, 102–120 (2006).

    Article  Google Scholar 

  27. 27

    Lenton, T. M. Environmental tipping points. Annu. Rev. Environ. Resour. 38, 1–29 (2013).

    Article  Google Scholar 

  28. 28

    Stocker, T. F. & Schmittner, A. Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–865 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Steinacher, M., Joos, F. & Stocker, T. F. Allowable carbon emissions lowered by multiple climate targets. Nature 499, 197–201 (2013).

    CAS  Article  Google Scholar 

  30. 30

    McCollum, D. L. et al. Climate policies can help resolve energy security and air pollution challenges. Climatic Change 119, 479–494 (2013).

    Article  Google Scholar 

  31. 31

    von Stechow, C. et al. Integrating global climate change mitigation goals with other sustainability objectives: a synthesis. Annu. Rev. Environ. Resour. 40, 363–394 (2015).

    Article  Google Scholar 

  32. 32

    Hallegatte, S. et al. Shock Waves: Managing the Impacts of Climate Change on Poverty (World Bank, 2016).

    Google Scholar 

  33. 33

    O'Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2013).

    Article  Google Scholar 

  34. 34

    Vuuren, D. P. van. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2013).

    Article  Google Scholar 

Download references


This paper benefited from many discussions with all the authors of the AR5 Synthesis Report of the IPCC, many authors from the three Working Groups, and members from the government delegations during the approval plenary in Copenhagen, 2014. Marianne Fay, Jan Fuglestvedt and Brian O'Neill provided useful comment on previous versions of the manuscript.

Author information




All authors contributed to the assessment of the literature, the design of the figure and concepts and the writing of the paper.

Corresponding author

Correspondence to Stephane Hallegatte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hallegatte, S., Rogelj, J., Allen, M. et al. Mapping the climate change challenge. Nature Clim Change 6, 663–668 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing