Commentary | Published:

Why the right climate target was agreed in Paris

Nature Climate Change volume 6, pages 649653 (2016) | Download Citation

  • A Correction to this article was published on 25 August 2016

This article has been updated

The Paris Agreement duly reflects the latest scientific understanding of systemic global warming risks. Limiting the anthropogenic temperature anomaly to 1.5–2 °C is possible, yet requires transformational change across the board of modernity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Change history

  • 13 July 2016

    In the Commentary "Why the right climate target was agreed in Paris" (Nature Clim. Change 6, 649–653; 2016), in the first paragraph of the 'Feasibility' section, 'ref. 38, Table 2.2' should have read 'ref. 37, Table 2.2'. Corrected in the online versions after print: 13 July 2016.

References

  1. 1.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  2. 2.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  3. 3.

    German Advisory Council on Global Change Scenario for the Derivation of Global CO2-Reduction Targets and Implementation Strategies (WBGU, 1995).

  4. 4.

    & Reg. Environ. Change 11, S15–S26 (2011).

  5. 5.

    Report of the Conference of the Parties on its Sixteenth Session, held in Cancun from 29 November to 10 December 2010. Addendum: Part Two: Action taken by the Conference of the Parties at its Sixteenth Session (UNFCCC, 2010).

  6. 6.

    et al. Nature 461, 472–475 (2009).

  7. 7.

    et al. Science 347, 736 (2015).

  8. 8.

    et al. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2015).

  9. 9.

    et al. AMBIO 40, 739–761 (2011).

  10. 10.

    , & Science 344, 735–738 (2014).

  11. 11.

    , , , & Geophys. Res. Lett. 41, 3502–3509 (2014).

  12. 12.

    et al. Earth Syst. Dynam. 7, 327–351 (2016).

  13. 13.

    , , & Nature Clim. Change 2, 867–870 (2012).

  14. 14.

    et al. Nature Clim. Change 3, 165–170 (2013).

  15. 15.

    Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 (UNFCCC, 2015).

  16. 16.

    & Nature 514, 30–31 (2014).

  17. 17.

    Nature 521, 27–28 (2015).

  18. 18.

    et al. Nature Clim. Change 6, 42–50 (2016).

  19. 19.

    et al. Nature Clim. Change 5, 519–527 (2015).

  20. 20.

    Unburnable Carbon 2013: Wasted Capital and Stranded Assets (Carbon Tracker and the Grantham Research Institute on Climate Change and the Environment, 2013).

  21. 21.

    Fossil fuel divestment: a brief history. The Guardian (9 October 2014).

  22. 22.

    & Nature 517, 187–190 (2015).

  23. 23.

    Manual of Political Economy (Oxford Univ. Press, 1969).

  24. 24.

    & Genetic Algorithms and Engineering Optimization (Wiley, 2002).

  25. 25.

    Introduction to Risk-Based Decision-Making (United States Coast Guard, 2016).

  26. 26.

    & Paris, Potlatch and Pareto. (The Earth League, 2015).

  27. 27.

    German Advisory Council on Global Change A Social Contract for Sustainability (WBGU, 2011).

  28. 28.

    Renewables 2015 Global Status Report. (REN21 Secretariat, 2015).

  29. 29.

    New record-breaking year for Danish wind power. Energinet (15 January 2016);

  30. 30.

    et al. Technology Improvement and Emissions Reductions as Mutually Reinforcing Efforts: Observations from the Global Development of Solar and Wind Energy, Technical Report. (MIT, 2015);

  31. 31.

    , & From Warming Fate to Warming Limit: Benchmarks to a Global Climate Convention (International Project for Sustainable Energy Paths, 1989).

  32. 32.

    & Cost-Benefit Analyses of Climate Change (ed. Toth, F. L.) 121–139 (Birkhäuser Basel, 1998)

  33. 33.

    Climatic Change 100, 229–238 (2010).

  34. 34.

    et al. Climate Policy 13, 751–769 (2013).

  35. 35.

    , , & Science 339, 1198–1201 (2013).

  36. 36.

    et al. Nature 484, 49–54 (2012).

  37. 37.

    IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2014).

  38. 38.

    , & Nature Clim. Change 2, 429–432 (2012).

  39. 39.

    AMBIO 41, 10–22 (2012).

  40. 40.

    et al. Climatic Change 110, 845–878 (2012).

  41. 41.

    , & Atmos. Chem. Phys. 11, 1417–1456 (2011).

  42. 42.

    , & Nature Clim. Change 2, 248–253 (2011).

  43. 43.

    IPCC AR5 Scenario Database (IIASA, accessed 16 January 2016);

  44. 44.

    AR5 scenario explorer (PIK, accessed 16 January 2016);

  45. 45.

    , , , & Nature Geosci. 6, 5–6 (2016).

Download references

Acknowledgements

The authors thank Ottmar Edenhofer, Katja Frieler, Robert Gieseke, Jonathan Koomey and Gunnar Luderer for their helpful comments and valuable hints.

Author information

Affiliations

  1. Hans Joachim Schellnhuber, Stefan Rahmstorf and Ricarda Winkelmann are at the Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany

    • Hans Joachim Schellnhuber
    • , Stefan Rahmstorf
    •  & Ricarda Winkelmann
  2. Hans Joachim Schellnhuber is also at the Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA

    • Hans Joachim Schellnhuber

Authors

  1. Search for Hans Joachim Schellnhuber in:

  2. Search for Stefan Rahmstorf in:

  3. Search for Ricarda Winkelmann in:

Corresponding authors

Correspondence to Hans Joachim Schellnhuber or Stefan Rahmstorf or Ricarda Winkelmann.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nclimate3013

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing