Abstract
The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated1,2,3,4,5. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution6,7,8,9,10 over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps6. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate–hydrological model11,12 simulation, we show that only 80% of GWD ends up in the ocean. An increase in runoff to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (±0.004) mm yr−1 in 1900 and increased to 0.27 (±0.04) mm yr−1 in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993–2010 to be +0.12 (±0.04) mm yr−1, suggesting that the net terrestrial water contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011).
Gregory, J. M. et al. Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J. Clim. 26, 4476–4499 (2013).
IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).
Milly, P. C. D. et al. in Understanding Sea-Level Rise and Variability (eds Church, J. A. et al.) Ch. 8 (Wiley-Blackwell, 2010).
Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).
Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012).
Konikow, L. F. Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys. Res. Lett. 38, L17401 (2011).
Döll, P. et al. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Wat. Resour. Res. 50, 5698–5720 (2014).
Pokhrel, Y. N. et al. Model estimates of sea level change due to anthropogenic impacts on terrestrial water storage. Nature Geosci. 5, 389–392 (2012).
Hurrell, J. W. et al. The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).
Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, M03001 (2011).
Sahagian, D. L., Schwartz, F. W. & Jacobs, D. K. Direct anthropogenic contributions to sea level rise in the twentieth century. Nature 367, 54–57 (1994).
Greuell, W. Sea-level rise. Nature 369, 615–616 (1994).
Chao, B. F. Man-made lakes and sea-level rise. Nature 370, 258 (1994).
Rodenburg, E. Man-made lakes and sea-level rise. Nature 370, 258 (1994).
Gornitz, V., Rosenzeig, C. & Hillel, D. Is sea level rising or falling? Nature 371, 481 (1994).
Sahagian, D. L., Schwartz, F. W. & Jacobs, D. K. Sea-level rise reply. Nature 369, 616 (1994).
Gornitz, V. Sea-level rise: a review of recent past and near-future trends. Earth Surf. Process. Landf. 20, 7–20 (1995).
Huntington, T. G. Can we dismiss the effect of changes in land based water storage on sea level rise? Hydrol. Process. 22, 717–723 (2008).
IHP-VI Non-Renewable Groundwater Resources: A Guidebook on Socially-sustainable Management for Water-policy Makers Series on Groundwater No. 10 (UNESCO, 2006).
Famiglietti, J. S. The global groundwater crisis. Nature Clim. Change 4, 945–948 (2014).
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, L18401 (2009).
Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Wat. Resour. Res. 51, 5217–5238 (2015).
DeAngelis, A. et al. Evidence of enhanced precipitation due to irrigation over the Great Plains of the United States. J. Geophys. Res. 115, D15115 (2010).
Kustu, M. D., Fan, Y. & Robock, A. Large-scale water cycle perturbation from irrigation in the High Plains: a synthesis of observed streamflow changes. J. Hydrol. 390, 222–224 (2010).
Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U. S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).
Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).
Danabasoglu, G. et al. The CCSM4 Ocean Component. J. Clim. 25, 1361–1389 (2012).
Hunke, E. C. & Lipscomb, W. H. CICE: The Los Alamos Sea Ice Model. Documentation and Software User’s Manual Version 4.0 LA-CC-06-012 (Los Alamos National Laboratory T-3 Fluid Dynamics Group, 2008).
Neale, R. B. et al. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Clim. 26, 5150–5168 (2013).
Oleson, K. W. et al. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res. 113, G01021 (2008).
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E. & Gulden, L. E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res. 110, D21106 (2005).
Niu, G.-Y., Yang, Z.-L., Dickinson, R. E., Gulden, L. E. & Su, H. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res. 112, D07103 (2007).
Sacks, W. J., Cook, B. I., Buenning, N., Levis, S. & Helkowski, J. H. Effects of global irrigation on the near-surface climate. Clim. Dynam. 33, 159–175 (2009).
Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011).
Fekete, B. M., Vorosmarty, C. J. & Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 16(3), 15-1–15-10 (2002).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).
Lawrence, D. M. et al. The CCSM4 land simulation, 1850–2005: assessment of surface climate and new capabilities. J. Clim. 25, 2240–2260 (2012).
Wada, Y., Van Beek, L. P. H. & Bierkens, M. F. P. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol. Earth Syst. Sci. 15, 3785–3808 (2011).
Acknowledgements
Y.W. is supported by Japan Society for the Promotion of Science (JSPS) Oversea Research Fellowship (grant no. JSPS-2014-878). M.-H.L. is supported by grants MOST-104-2923-M-002-002-MY4 and MOST-100-2119-M-001-029-MY5 to National Taiwan University. J.T.R. and J.S.F. are supported by NASA grants from the GRACE Science Team, the Sea Level Program and by Water Initiative at the Jet Propulsion Laboratory, California Institute of Technology. M.-H.L., J.T.R. and J.S.F. are also supported by a grant from the University of California Office of the President, Multicampus Research Programs and Initiatives.
Author information
Authors and Affiliations
Contributions
Y.W., M.-H.L. and P.J.-F.Y. performed background research and designed the study with contributions from the other co-authors. M.-H.L., Y.-H.T., R.-J.W. and Y.W. prepared the data and conducted the model simulation. Y.W., M.-H.L. and P.J.-F.Y. prepared the manuscript. All authors discussed the results and commented on the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 501 kb)
Rights and permissions
About this article
Cite this article
Wada, Y., Lo, MH., Yeh, PF. et al. Fate of water pumped from underground and contributions to sea-level rise. Nature Clim Change 6, 777–780 (2016). https://doi.org/10.1038/nclimate3001
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate3001
This article is cited by
-
Reassessing the contributions of terrestrial waters to sea level variations in the South China Sea and its response to alternating ENSO events
Science China Earth Sciences (2024)
-
Notable shifts beyond pre-industrial streamflow and soil moisture conditions transgress the planetary boundary for freshwater change
Nature Water (2024)
-
Pathway analysis of food security by employing climate change, water, and agriculture nexus in Pakistan: partial least square structural equation modeling
Environmental Science and Pollution Research (2023)
-
The Role of Space-Based Observations for Groundwater Resource Monitoring over Africa
Surveys in Geophysics (2023)
-
Irrigation in the Earth system
Nature Reviews Earth & Environment (2023)