Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

Abstract

Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use1. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments1,2 and global crop models3 to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[0;47]%–27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4–17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Comparison between FACE observations and GGCM simulations.
Figure 2: Simulated CWP responses across agro-climatic regions.
Figure 3: Maps of median relative change between simulated CWP CC w/ CO2 and CC w/o CO2 only (%) in the model ensemble (including six GGCMs × five GCMs) by 2050 under RCP 8.5.
Figure 4: Global average CWP (%) relative to 2000 simulated under RCP 8.5 for each GGCM driven by five different GCMs.

References

  1. 1

    Kimball, B. A. in Handbook of Climate Change and Agroecosystems, Impacts, Adaptation, and Mitigation Vol. 1 (eds Hillel, D. & Rosenzweig, C.) 87–107 (Imperial College, 2011).

    Google Scholar 

  2. 2

    Vanuytrecht, E., Raes, D., Willems, P. & Geerts, S. Quantifying field-scale effects of elevated carbon dioxide concentration on crops. Clim. Res. 54, 35–47 (2012).

    Article  Google Scholar 

  3. 3

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  Google Scholar 

  5. 5

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    CAS  Article  Google Scholar 

  6. 6

    Wheeler, T. R. & von Braun, J. Climate change impacts on global food security. Science 341, 508–513 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Hanjra, M. A. & Qureshi, M. E. Global water crisis and future food security in an era of climate change. Food Policy 35, 365–377 (2010).

    Article  Google Scholar 

  9. 9

    Rockström, J. & Falkenmark, M. Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Crit. Rev. Plant Sci. 19, 319–346 (2000).

    Article  Google Scholar 

  10. 10

    Brauman, K. A., Siebert, S. & Foley, J. A. Improvements in crop water productivity increase water sustainability and food security—a global analysis. Environ. Res. Lett. 8, 024030 (2013).

    Article  Google Scholar 

  11. 11

    Burkart, S., Manderscheid, R., Wittich, K. P., Löpmeier, F. J. & Weigel, H. J. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment. Plant Biol. 13, 258–269 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösbsrger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Tubiello, F. N. et al. Crop response to elevated CO2 and world food supply: a comment on “Food for Thought...” by Long et al., Science 312: 1918–1921, 2006. Eur. J. Agron. 26, 215–223 (2007).

    CAS  Article  Google Scholar 

  14. 14

    Ainsworth, E. A., Leakey, A. D. B., Ort, D. R. & Long, S. P. FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol. 179, 5–9 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Leakey, A. D. B., Bishop, K. A. & Ainsworth, E. A. A multi-biome gap in understanding of crop and ecosystem responses to elevated CO2 . Curr. Opin. Plant Biol. 15, 228–236 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Rosenthal, D. M. & Tomeo, N. J. Climate, crops and lacking data underlie regional disparities in the CO2 fertilization effect. Environ. Res. Lett. 8, 031001 (2013).

    Article  Google Scholar 

  18. 18

    Boote, K. J., Jones, J. W., White, J. W., Asseng, S. & Lizaso, J. I. Putting mechanisms into crop production models. Plant Cell Environ. 36, 1658–1672 (2013).

    CAS  Article  Google Scholar 

  19. 19

    Liu, J. A GIS-based tool for modelling large-scale crop-water relations. Environ. Modell. Softw. 24, 411–422 (2009).

    Article  Google Scholar 

  20. 20

    Fader, M., Rost, S., Müller, C., Bondeau, A. & Gerten, D. Virtual water content of temperate cereals and maize: present and potential future patterns. J. Hydrol. 384, 218–231 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Porter, J. R. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) Ch. 7, 485–533 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  22. 22

    Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nature Clim. Change 3, 827–832 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dyn. Discuss. 4, 49–92 (2013).

    Article  Google Scholar 

  24. 24

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000—Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. 24, 024023 (2010).

    Google Scholar 

  26. 26

    Rockström, J. et al. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manage. 97, 543–550 (2010).

    Article  Google Scholar 

  27. 27

    Rost, S. et al. Global potential to increase crop production through water management in rainfed agriculture. Environ. Res. Lett. 4, 044002 (2009).

    Article  Google Scholar 

  28. 28

    Gassman, P. W. et al. Historical Development and Applications of the EPIC and APEX Models Working Paper 05-WP 397 (2005); http://www.card.iastate.edu/publications/dbs/pdffiles/05wp397.pdf

  29. 29

    Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J. & Jakas, M. C. Q. Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol. Model. 192, 362–384 (2006).

    Article  Google Scholar 

  30. 30

    Williams, J. R. EPIC-Erosion/Productivity Impact Calculator Technical Bulletin Number 1768 (USDA Agricultural Research Service, 1990).

  31. 31

    Williams, J. R. in Computer Models of Watershed Hydrology (ed. Singh, V. P.) Ch. 25, 909–1000 (Water Resources, 1995).

    Google Scholar 

  32. 32

    Liu, J., Williams, J. R., Zehnder, A. & Yang, H. GEPIC—modelling wheat yield and crop water productivity with high resolution on a global scale. Agric. Syst. 94, 478–493 (2007).

    Article  Google Scholar 

  33. 33

    Bondeau, A. et al. Modelling the role of agriculture in the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  34. 34

    Waha, K., van Bussel, L. G. J., Müller, C. & Bondeau, A. Climate-driven simulation of global crop sowing dates. Glob. Ecol. Biogeogr. 21, 247–259 (2011).

    Article  Google Scholar 

  35. 35

    Lindeskog, M. et al. Implications of accounting for land use in simulations of ecosystem services and carbon cycling in Africa. Earth Syst. Dyn. Discuss. 4, 235–278 (2013).

    Article  Google Scholar 

  36. 36

    Smith, B., Prentice, I. C. & Sykes, M. T. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Glob. Ecol. Biogeogr. 10, 621–637 (2001).

    Article  Google Scholar 

  37. 37

    Elliott, J. et al. The parallel system for integrating impact models and sectors (pSIMS). Environ. Modell. Softw. 62, 509–516 (2014).

    Article  Google Scholar 

  38. 38

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Article  Google Scholar 

  39. 39

    Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).

    Article  Google Scholar 

  40. 40

    Deryng, D., Sacks, W. J., Barford, C. C. & Ramankutty, N. Simulating the effects of climate and agricultural management practices on global crop yield. Glob. Biogeochem. Cycles 25, 1–18 (2011).

    Article  Google Scholar 

  41. 41

    Farquhar, G. D., Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS  Article  Google Scholar 

  42. 42

    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling inthe LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  43. 43

    Penman, H. L. Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. Lond. A 193, 120–145 (1948).

    CAS  Article  Google Scholar 

  44. 44

    Monteith, J. Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–224 (1965).

    CAS  Google Scholar 

  45. 45

    Priestley, C. H. B. & Taylor, R. J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weath. Rev. 100, 81–92 (1972).

    Article  Google Scholar 

  46. 46

    Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. Soil and Water Assessment Tool. Theoretical Documentation, Version 2005 (Grassland, Soil and Water Research Laboratory, Agricultural Research Service, 2005).

    Google Scholar 

  47. 47

    Stockle, C. O., Williams, J. R., Rosenberg, N. J. & Jones, C. A. A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops: Part 1–modification of the epic model for climate change analysis. Agric. Syst. 38, 225–238 (1992).

    Article  Google Scholar 

  48. 48

    Boote, K. J., Allen, L. H. Jr, Prasad, P. V. V. & Jones, J. W. in Handbook of Climate Change and Agroecosystems—Impacts, Adaptation, and Mitigation Vol. 1 (eds Hillel, D. & Rosenzweig, C.) Ch. 6 (Imperial College, 2011).

    Google Scholar 

  49. 49

    Farquhar, G. & von Caemmerer, S. in Encyclopedia of Plant Physiology. New Series Vol. 12B (ed. Lange, O.) 549–587 (Springer, 1982).

    Google Scholar 

  50. 50

    Boote, K. J. & Pickering, N. B. Modeling photosynthesis of row crop canopies. HortScience 29, 1423–1434 (1994).

    Article  Google Scholar 

  51. 51

    Pickering, N. B., Jones, J. W. & Boote, K. J. in Climate Change and Agriculture: Analysis of Potential International Impacts (eds Rosenzweig, C., Jones, J. W. & Allen, L. H. J.) 147–162 (American Society of Agronomy, 1995).

    Google Scholar 

  52. 52

    Gerten, D., Schaphoff, S. & Lucht, W. Potential future changes in water limitations of the terrestrial biosphere. Climatic Change 80, 277–299 (2007).

    CAS  Article  Google Scholar 

  53. 53

    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 4, 439–473 (2007).

    Article  Google Scholar 

  54. 54

    Hunsaker, D. J., Kimball, B. A., Pinter, P. J., LaMorte, R. L. & Wall, G. W. Carbon dioxide enrichment and irrigation effects on wheat evapotranspiration and water use efficiency. Trans. ASAE 39, 1345–1355 (1996).

    Article  Google Scholar 

  55. 55

    Hunsaker, D. J. et al. CO2 enrichment and soil nitrogen effects on wheat evapotranspiration and water use efficiency. Agric. For. Meteorol. 104, 85–105 (2000).

    Article  Google Scholar 

  56. 56

    Kimball, B. A., Kobayashi, K. & Bindi, M. Responses of Agricultural Crops to Free-Air CO2 Enrichment 77, 293–368 (2002).

    Google Scholar 

  57. 57

    Kimball, B. A. et al. Free-air CO2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat. Wat. Resour. Res. 35, 1179–1190 (1999).

    CAS  Article  Google Scholar 

  58. 58

    Weigel, H.-J. & Manderscheid, R. Crop growth responses to free air CO2 enrichment and nitrogen fertilization: rotating barley, ryegrass, sugar beet and wheat. Eur. J. Agron. 43, 97–107 (2012).

    Article  Google Scholar 

  59. 59

    O’Leary, G. et al. Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob. Change Biol. 21, 2670–2686 (2015).

    Article  Google Scholar 

  60. 60

    Zhu, C., Xu, X., Wang, D., Zhu, J. & Liu, G. An indica rice genotype showed a similar yield enhancement to that of hybrid rice under free air carbon dioxide enrichment. Sci. Rep. 5, 12719 (2015).

    CAS  Article  Google Scholar 

  61. 61

    Shimono, H., Nakamura, H., Hasegawa, T. & Okada, M. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice. Glob. Change Biol. 19, 2444–2453 (2013).

    Article  Google Scholar 

  62. 62

    Bernacchi, C. J., Kimball, B. A., Quarles, D. R., Long, S. P. & Ort, D. R. Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 143, 134–144 (2006).

    Article  Google Scholar 

  63. 63

    Manderscheid, R., Erbs, M. & Weigel, H.-J. Interactive effects of free-air CO2 enrichment and drought stress on maize growth. Eur. J. Agron. 52, 11–21 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work has been conducted under the framework of ISI-MIP and in partnership with the AgMIP community. The ISI-MIP Fast Track project was funded by the German Federal Ministry of Education and Research (BMBF) with project funding reference number 01LS1201A. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This work was also supported by a research stipend from the Tyndall Centre for Climate Change Research and a Belmont Forum grant from the UK Natural Environment Research Council (grant no. NE/L008785/1) to D.D., by the National Science Foundation under grants SBE-0951576 and GEO-1215910 to J.E., by the BMBF grant 01LN1317A to C.M., and by the Formas Strong Research Environment ‘land use today and tomorrow’ to S.O., T.A.M.P. was supported by EU FP7 project EMBRACE (grant no. 282672). We are grateful to B. A. Kimball and A. Leakey for pointing out appropriate literature on the FACE experiments.

Author information

Affiliations

Authors

Contributions

D.D. had the main responsibility for the study idea, methods, analysis and writing the paper. D.D., J.E. and C.R. designed and coordinated the modelling intercomparison analysis. J.E., C.F., C.M. and T.A.M.P. contributed to analysis. D.D., J.E., C.F., C.M., T.A.M.P., S.O., N.K. and E.S. performed the crop model simulations. J.E., C.M., C.F., T.A.M.P., K.J.B., D.C. and A.C.R. made significant contributions in developing the paper structure and interpreting the results. J.E., A.C.R., D.G., S.S., H.Y., J.W.J. and C.R. made important contributions in developing the original study idea. All authors contributed to writing the paper.

Corresponding author

Correspondence to Delphine Deryng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6310 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deryng, D., Elliott, J., Folberth, C. et al. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nature Clim Change 6, 786–790 (2016). https://doi.org/10.1038/nclimate2995

Download citation

Further reading