Detection and attribution of human influence on regional precipitation


Understanding how human influence on the climate is affecting precipitation around the world is immensely important for defining mitigation policies, and for adaptation planning. Yet despite increasing evidence for the influence of climate change on global patterns of precipitation, and expectations that significant changes in regional precipitation should have already occurred as a result of human influence on climate, compelling evidence of anthropogenic fingerprints on regional precipitation is obscured by observational and modelling uncertainties; and by using current methods, it is likely to remain so for years to come. This is in spite of substantial ongoing improvements in models, new reanalyses and a satellite record that spans over thirty years. If we are to quantify how human-induced climate change is affecting the regional water cycle, we need to consider new ways of identifying the effects of natural and anthropogenic influences on precipitation that take full advantage of our physical expectations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Observational uncertainties due to sparse coverage obscure expected fingerprints of change.
Figure 2: Magnitudes of zonal mean land precipitation trends are dependent on observational datasets.
Figure 3: Simulated process-based fingerprint of anthropogenic precipitation change.

Change history

  • 07 June 2016

    In the HTML version of this Perspective originally published, the second affiliation for Peter A. Scott was missing; this has now been corrected.


  1. 1

    IPCC Summary for Policymakers in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

  2. 2

    Balan Sarojini, B., Stott, P. A., Black, E. & Polson, D. Fingerprints of changes in annual and seasonal precipitation from CMIP5 models over land and ocean. Geophys. Res. Lett. 39, L21706 (2012).

  3. 3

    Polson, D., Hegerl, G. C., Zhang, X. & Osborn, T. Changes in seasonal land precipitation during the latter twentieth-century. J. Clim. 20, 6679–6697 (2013).

  4. 4

    Hegerl, G. C. et al. Challenges in quantifying changes in the global watercycle. Bull. Am. Meteorol. Soc. (2015).

  5. 5

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  6. 6

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 867–952 (IPCC, Cambridge Univ. Press, 2013).

  7. 7

    Noake, K., Polson, D., Hegerl, G. & Zhang, X. Changes in seasonal land precipitation during the latter twentieth-century. Geophys. Res. Lett. 39, L03706 (2012).

  8. 8

    Min, S., Zhang, X. & Zwiers, F. W. Human-induced Arctic moistening. Science 320, 518–520 (2008).

  9. 9

    Wan, H. et al. Attributing northern high-latitude precipitation change over the period 1966–2005 to human influence. Clim. Dynam. 45, 1713–1726 (2014).

  10. 10

    Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nature Geosci. 7, 583–587 (2014).

  11. 11

    Zhang, X. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007).

  12. 12

    Chadwick, R., Good, P., Martin, G. & Rowel, L. D. P. Large rainfall changes consistently projected over substantial areas of tropical land. Nature Clim. Change 6, 177–181 (2016).

  13. 13

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

  14. 14

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

  15. 15

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

  16. 16

    Willett, K. M., Jones, P. D., Gillett, N. P. & Thorne, P. W. Attribution of observed surface humidity changes to human influence. Nature 449, 710–713 (2007).

  17. 17

    Santer, B. D. et al. Identification of human-induced changes in atmospheric moisture content. Proc. Natl Acad. Sci. USA 104, 15248–15253 (2007).

  18. 18

    Santer, B. D. et al. Incorporating model quality information in climate change detection and attribution studies. Proc. Natl Acad. Sci. USA 106, 14778–14783 (2009).

  19. 19

    Blunden, J. & Arndt, D. S. State of the Climate in 2013. Bull. Am. Meteorol. Soc. 95, 1–238 (2014).

  20. 20

    Allan, R. P. et al. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys. 35, 533–552 (2013).

  21. 21

    Pendergrass, A. G. & Hartmann, D. L. The atmospheric energy constraint on global-mean precipitation change. J. Clim. 27, 757–768 (2014).

  22. 22

    Thorpe, L. & Andrews, T. The physical drivers of historical and 21st century global precipitation changes. Environ. Res. Lett. 9, 064024 (2014).

  23. 23

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nature Geosci. 7, 716–721 (2014).

  24. 24

    Xie, S.-P. et al. Global warming pattern formation: sea surface temperature and rainfall. J. Clim. 23, 966–986 (2010).

  25. 25

    Seager, R. J. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

  26. 26

    Kang, S. M., Polvani, L. M., Fyfe, J. C. & Sigmond, M. Impact of polar ozone depletion on subtropical precipitation. Science 332, 951–954 (2011).

  27. 27

    Min, S.-K. & Son, S.-W. Multimodel attribution of the Southern Hemisphere Hadley cell widening: major role of ozone depletion. J. Geophys. Res. Atmos. 118, 3007–3015 (2013).

  28. 28

    Scaife, A. et al. Climate change projections and stratosphere–troposphere interaction. Clim. Dyn. 38, 2089–2097 (2012).

  29. 29

    Seager, R. J., Naik, N. & Vogel, L. Does global warming cause intensified interannual hydroclimate variability? J. Clim. 25, 3355–3372 (2012).

  30. 30

    Vecchi, G. A. & Wittenberg, A. T. El Niño and our future climate: where do we stand? WIREs Clim. Change 1, 260–270 (2010).

  31. 31

    Nicholson, S. E. & Kim, J. The relationship of the El Niño-Southern oscillation to African rainfall. Int. J. Climatol. 17, 117–135 (1997).

  32. 32

    Vinoj, V. et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nature Geosci. 7, 308–313 (2014).

  33. 33

    Black, E. et al. The use of remotely sensed rainfall for managing drought risk: a case study of weather index insurance in Zambia. Remote Sens. 8, 342 (2016).

  34. 34

    Levy, A. A. L. et al. Can correcting feature location in simulated mean climate improve agreement on projected changes? Geophys. Res. Lett. 40, 354–358 (2013).

  35. 35

    Collins, M. et al. Observational challenges in evaluating climate models. Nature Clim. Change 3, 940–941 (2013).

  36. 36

    Wu, P., Christidis, N. & Stott, P. A. Anthropogenic impact on Earth's hydrological cycle. Nature Clim. Change 3, 807–810 (2013).

  37. 37

    Wan, H. et al. Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. J. Geophys. Res. Atmos. 118, 534–546 (2013).

  38. 38

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 9 (IPCC, Cambridge Univ. Press, 2013).

  39. 39

    Stevens, B. & Bony, S. What are climate models missing? Science 340, 1053–1054 (2013).

  40. 40

    Knutti, R. & Sedlacek, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Clim. Change 3, 369–373 (2013).

  41. 41

    Kendon, E. J. et al. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nature Clim. Change 4, 570–576 (2014).

  42. 42

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

  43. 43

    Roberts, M. J. et al. Tropical cyclones in the UPSCALE ensemble of high resolution global climate models. J. Clim. 28, 574–596 (2015).

  44. 44

    Demory, M.-E. et al. The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim. Dynam. 42, 2201–2225 (2013).

  45. 45

    Jung, T . et al. High-resolution global climate simulations with the ECMWF model in Project Athena: experimental design, model climate, and seasonal forecast skill. J. Clim. 25, 3155–3172 (2012).

  46. 46

    Strachan, J., Vidale, P. L., Hodges, K., Roberts, M. & Demory, M.-E. Investigating global tropical cyclone activity with a hierarchy of AGCMs: the role of model resolution. J. Clim. 26, 133–152 (2013).

  47. 47

    Wilcox, L. J., Highwood, E. J. & Dunstone, N. J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 8, 1748–9326 (2013).

  48. 48

    Marvel, K. & Bonfils, C. Identifying external influences on global precipitation. Proc. Natl Acad. Sci. USA 110, 19301–19306 (2013).

  49. 49

    Scheff, J. & Frierson, D. Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J. Clim. 25, 4330–4347 (2012).

  50. 50

    Levy, A. A. L. et al. Correcting feature location in GCMs aids the detectability of external influence on precipitation. J. Geophys. Res. 119, 12466–12478 (2014).

  51. 51

    Corti, S., Molteni, F. & Palmer, T. N. Signature of recent climate change in frequencies of natural atmospheric circulation regimes. Nature 398, 799–802 (1999).

  52. 52

    Mann, M. E., Bradley, R. S. & Hughes, M. K. in ENSO: Multiscale Variability and Global and Regional Impacts (eds Diaz, H. F. & Markgraf, V.) 357–412 (Cambridge Univ. Press, 2000).

  53. 53

    Black, E. The influence of the North Atlantic Oscillation and European circulation regimes on the daily to interannual variability of winter precipitation in Israel. Int. J. Climatol. 32, 1654–1664 (2011).

  54. 54

    Christensen, J. H. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 14 (IPCC, Cambridge Univ. Press, 2013).

  55. 55

    Christidis, N. C. & Stott, P. A. Extreme rainfall in the United Kingdom during winger 2013/14: the role of atmospheric circulation and climate change. Bull. Am. Meteorol. Soc. 96, S46–S50 (2015).

  56. 56

    Lavers, D. A. et al. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. 117, D20106 (2012).

  57. 57

    Lavers, D. A. et al. Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett. 8, 034010 (2013).

  58. 58

    Dean, S. M., Rosier, S., Carey-Smith, T. & Stott, P. A. The role of climate change in the two-day extreme rainfall in Golden Bay, New Zealand, December, 2011. Bull. Am. Meteorol. Soc. 94, S61–S63 (2013).

  59. 59

    Polson, D., Hegerl, G. C., Allan, R. P. & Balan Sarojini, B. Have greenhouse gases intensified the contrast between wet and dry regions? Geophys. Res. Lett. 40, 4783–4787 (2013).

  60. 60

    Liu, C. & Allan, R. P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 8, 034002 (2013).

  61. 61

    Allan, R. P. Climate Change: dichotomy of drought and deluge. Nature Geosci. 7, 700–701 (2014).

  62. 62

    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geosci. 7, 703–708 (2014).

  63. 63

    Rotstayn, L. D. & Lohmann, U. Tropical rainfall trends and the indirect aerosol effect. J. Clim. 15, 2103–2116 (2002).

  64. 64

    Hegerl, G. C. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 9 (IPCC, Cambridge Univ. Press, 2007).

  65. 65

    Dong, B., Sutton, R., Highwood, E. J. & Wilcox, L. J. The impacts of European and Asian anthropogenic sulphur dioxide emissions on Sahel rainfall. J. Clim. 27, 7000–7017 (2014).

  66. 66

    Dong, B.-W. & Sutton, R. Dominant role of greenhouse gas forcing in the recovery of Sahel rainfall. Nature Clim. Change 5, 757–760 (2015).

  67. 67

    Allen, M. R. Liability for climate change. Nature 421, 891–892 (2003).

  68. 68

    Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heat wave of 2003. Nature 432, 610–614 (2004).

  69. 69

    Pall, P. et al. Anthropogenic greenhouse gas contribution to UK autumn flood risk. Nature 470, 382–385 (2011).

  70. 70

    Herring, S. C., Hoerling, M. P., Kossin, J. P., Peterson, T. C. & Stott, P. A. Explaining extreme events of 2014 from a climate perspective. Bull. Am. Meteorol. Soc. 96, S1–S172 (2015).

  71. 71

    Herring, S. C. et al. Summary and Broader context Bull. Am. Meteorol. Soc. 82, S168–S172 (2014).

  72. 72

    Hoerling, M. et al. Northeast Colorado extreme rains interpreted in a climate change context. Bull. Am. Meteorol. Soc. 95, S15–S18 (2014).

  73. 73

    Schaller, N. et al. Human influence on climate in the 2014 southern England winter floods and their impacts. Nature Clim. Change 6, 627–634 (2016).

  74. 74

    Trenberth, K. E. et al. Attribution of climate extreme events. Nature Clim. Change 5, 725–730 (2015).

  75. 75

    Huntingford, C. et al. Potential influences in the United Kingdom's floods of winter 2013–2014. Nature Clim. Change 4, 769–777 (2014).

  76. 76

    Stott, P. A. et al. Attribution of extreme weather and climate-related events. WIREs Clim. Change 7, 23–41 (2016).

  77. 77

    Power, S. et al. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature 502, 541–545 (2013).

  78. 78

    Hegerl, G. C. et al. Good Practice Guidance Paper on Detection and Attribution Related to Anthropogenic Climate Change (eds Stocker, T. F. et al.) (IPCC, Working Group I Technical Support Unit, 2010);

  79. 79

    Hegerl, G. C. & Zwiers, F. W. Use of models in detection and attribution of climate change. WIREs Clim. Change 2, 570–591 (2011).

  80. 80

    Harris, I. et al. Updated high-resolution grids of monthly climatic observations — the CRUTS 3.1 dataset. Int. J. Climatol. 34, 623–642 (2014).

  81. 81

    Becker, A. et al. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 5, 71–99 (2013).

  82. 82

    Beck, C., Grieser, J. & Rudolf, B. A new monthly precipitation climatology for the global land areas for the period 1951 to 2000. Clim. Status Rep. 7, 181–190 (2004).

Download references


This work is supported by Horyuji PAGODA project of the Changing Water Cycle programme of the UK Natural Environment Research Council (NERC) (Grant NE/I006672/1) and by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). B.B.S. acknowledges joint support from the UK NERC (Grant NE/I006672/1) and the Met Office Hadley Centre, and a discussion with Pier Luigi Vidale and Anne Verhoef on the atmospheric-land surface processes. E.B. was supported by the National Centre for Atmospheric Science — Climate division core research programme and the following research grants: HyCristal (NE/M020371/1), SatWIN-Scale (NE/M008797/1) and BRAVE (NE/M008983/1).

Author information

B.B.S. developed the content and led the writing; P.A.S and E.B. designed the outline of the article, contributed to discussions, text, and commented on the drafts.

Correspondence to Beena Balan Sarojini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sarojini, B., Stott, P. & Black, E. Detection and attribution of human influence on regional precipitation. Nature Clim Change 6, 669–675 (2016).

Download citation

Further reading