Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Observations of climate change among subsistence-oriented communities around the world

Abstract

The study of climate change has been based strongly on data collected from instruments, but how local people perceive such changes remains poorly quantified. We conducted a meta-analysis of climatic changes observed by subsistence-oriented communities. Our review of 10,660 observations from 2,230 localities in 137 countries shows that increases in temperature and changes in seasonality and rainfall patterns are widespread (≈70% of localities across 122 countries). Observations of increased temperature show patterns consistent with simulated trends in surface air temperature taken from the ensemble average of CMIP5 models, for the period 1955–2005. Secondary impacts of climatic changes on both wild and domesticated plants and animals are extensive and threaten the food security of subsistence-oriented communities. Collectively, our results suggest that climate change is having profound disruptive effects at local levels and that local observations can make an important contribution to understanding the pervasiveness of climate change on ecosystems and societies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Geographical distribution of data.
Figure 2: Detailed observations of climate and climate-driven changes.
Figure 3: Detailed observations of climate and climate-driven changes in the biological components of the environment (N = 2,899) overlying the biome global map.
Figure 4: Observations of changes in rainfall amounts overlaying the decadal trend (%) in annual mean precipitation simulated by the ensemble average of the CMIP5 IPCC AR5 Atlas Subset over the period 1955–2005.
Figure 5: Observations of changes in temperatures overlaying the decadal trend (°C) in annual mean near-surface temperature simulated by the ensemble average of the CMIP5 IPCC AR5 Atlas Subset over the period 1955–2005.

References

  1. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  2. Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  Google Scholar 

  3. Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol. Biogeogr. 12, 361–371 (2003).

    Google Scholar 

  4. Schiermeier, Q. The real holes in climate science. Nature 463, 284–287 (2010).

    CAS  Google Scholar 

  5. Gilman, E. L., Ellison, J., Duke, N. C. & Field, C. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89, 237–250 (2008).

    Google Scholar 

  6. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (IPCC, Cambridge Univ. Press, 2012).

  7. Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    CAS  Google Scholar 

  8. Galloway McLean, K. Advance Guard: Climate Change Impacts, Adaptation, Mitigation and Indigenous Peoples — A Compendium of Case Studies (United Nations University — Traditional Knowledge Initiative, 2010). A compendium of cases studies that show the value of TEK in relation to research on climate change.

    Google Scholar 

  9. Adger, W. N., Barnett, J., Brown, K., Marshall, N. & O'Brien, K. Cultural dimensions of climate change impacts and adaptation. Nature Clim. Change 3, 112–117 (2013). A study on the different ways in which climate change and culture are interrelated.

    Google Scholar 

  10. Alexander, C. et al. Linking indigenous and scientific knowledge of climate change. Bioscience 61, 477–484 (2011).

    Google Scholar 

  11. Macdonald, P., Harper, S. L., Willox, A. C. & Edge, V. L. A necessary voice: climate change and lived experiences of youth in Rigolet, Nunatsiavut, Canada. Glob. Environ. Chang. 23, 360–371 (2013).

    Google Scholar 

  12. Turner, N. J. & Berkes, F. Coming to understanding: developing conservation through incremental learning in the Pacific Northwest. Hum. Ecol. 34, 495–513 (2006).

    Google Scholar 

  13. King, D. N. T., Skipper, A. & Tawhai, W. B. Māori environmental knowledge of local weather and climate change in Aotearoa — New Zealand. Climatic Change 90, 385–409 (2008).

    Google Scholar 

  14. Nakashima, D. J., Galloway McLean, K., Thulstrup, H. D., Ramos Castillo, A. & Rubis, J. T. Weathering Uncertainty: Traditional Knowledge for Climate Change Assessment and Adaptation (United Nations University, 2012). A comprehensive analysis of implications of climate change for indigenous and marginalized communities.

    Google Scholar 

  15. Nyong, T., Adesina, F. & Elasha, B. The value of indigenous knowledge in climate change mitigation and adaptation strategies in the African Sahel. Mitig. Adapt. Strat. Glob. Change 12, 787–797 (2007).

    Google Scholar 

  16. McNeeley, S. M. & Shulski, M. D. Anatomy of a closing window: vulnerability to changing seasonality in Interior Alaska. Glob. Environ. Chang. 21, 464–473 (2011).

    Google Scholar 

  17. Prno, J. et al. Community vulnerability to climate change in the context of other exposure-sensitivities in Kugluktuk, Nunavut. Polar Res. 30, 7363 (2011).

    Google Scholar 

  18. Howe, P. D., Markowitz, E. M., Lee, T. M., Ko, C. Y. & Leiserowitz, A. Global perceptions of local temperature change. Nature Clim. Change 3, 352–356 (2013).

    Google Scholar 

  19. Lehner, F. & Stocker, T. F. From local perception to global perspective. Nature Clim. Change 5, 731–734 (2015).

    Google Scholar 

  20. Crona, B., Wutich, A., Brewis, A. & Gartin, M. Perceptions of climate change: linking local and global perceptions through a cultural knowledge approach. Climatic Change 119, 519–531 (2013). A comparative study, in six countries, of local observations of climate change.

    Google Scholar 

  21. Van Oldenborgh, G. J. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) Annex I (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  22. Metzger, M. J., Bunce, R. G. H., van Eupen, M. & Mirtl, M. An assessment of long term ecosystem research activities across European socio-ecological gradients. J. Environ. Manage. 91, 1357–1365 (2010).

    CAS  Google Scholar 

  23. Gearheard, S. et al. “It's not that simple”: a collaborative comparison of sea ice environments, their uses, observed changes, and adaptations in Barrow, Alaska, USA, and Clyde River, Nunavut, Canada. AMBIO 35, 203–211 (2006).

    Google Scholar 

  24. Karl, T. R. & Trenberth, K. E. Modern global climate change. Science 302, 1719–1723 (2003).

    CAS  Google Scholar 

  25. Marin, A. Riders under storms: contributions of nomadic herders' observations to analysing climate change in Mongolia. Glob. Environ. Chang. 20, 162–176 (2010).

    Google Scholar 

  26. Sherwood, S. & Fu, Q. A drier future. Science 343, 737–739 (2014).

    CAS  Google Scholar 

  27. Bury, J. T. et al. Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Climatic Change 105, 179–206 (2011).

    Google Scholar 

  28. Field, C. B. et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectorial Aspects (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  29. Gearheard, S., Pocernich, M., Stewart, R., Sanguya, J. & Huntington, H. P. Linking Inuit knowledge and meteorological station observations to understand changing wind patterns at Clyde River, Nunavut. Climatic Change 100, 267–294 (2010).

    Google Scholar 

  30. Prather, M. et al. in Climate Change 2013: The Physical Science Basis. (eds Stocker, T. F. et al.) Annex II (Cambridge Univ. Press, 2013).

    Google Scholar 

  31. Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    CAS  Google Scholar 

  32. Stocker, T. F. et al. Climate Change 2013: The Physical Science Basis (IPCC, World Meteorological Organization, 2013).

    Google Scholar 

  33. Chaudhary, P. & Bawa, K. S. Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol. Lett. 7, 767–770 (2011).

    Google Scholar 

  34. Schneider, P. Current and future climate change adaptation of a vulnerable coastal community on the Coromandel Peninsula, New Zealand. MSc thesis, Univ. Massey (2010).

  35. Roncoli, C., Ingram, K. & Kirshen, P. Reading the rains: local knowledge and rainfall forecasting in Burkina Faso. Soc. Nat. Resour. 15, 409–427 (2002).

    Google Scholar 

  36. Cunningham, S. J., Martin, R. O., Hojem, C. L. & Hockey, P. A. Temperatures in excess of critical thresholds threaten nestling growth and survival in a rapidly-warming arid savanna: a study of common fiscals. PLOS ONE 8, e74613 (2013).

    CAS  Google Scholar 

  37. Thomson, M. C., Connor, S. J., Ward, N. & Molyneux, D. Impact of climate variability on infectious disease in West Africa. EcoHealth 1, 138–150 (2004).

    Google Scholar 

  38. Weiss, R. A. & McMichael, A. J. Social and environmental risk factors in the emergence of infectious diseases. Nature Medicine 10, S70–S76 (2004).

    CAS  Google Scholar 

  39. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nature Geosci. 7, 716–721 (2014).

    CAS  Google Scholar 

  40. Gudmundsson, L., Rego, F. C. & Seneviratne, S. I. Predicting above normal wildfire activity in southern Europe as a function of meteorological drought. Environ. Res. Lett. 9, 084008 (2014).

    Google Scholar 

  41. Sillmann, J. & Roeckner, E. Indices for extreme events in projections of anthropogenic climate change. Climatic Change 86, 83–104 (2008).

    Google Scholar 

  42. Thomas, D. S., Twyman, C., Osbahr, H. & Hewitson, B. Adaptation to climate change and variability: farmer responses to intra-seasonal precipitation trends in South Africa. Climatic Change 83, 301–322 (2007).

    Google Scholar 

  43. Devkota, R. P., Bajracharya, B. & Narayan, T. The perception of Nepal's Tharu community in regard to climate change and its impacts on their livelihoods. Int. J. Environ. Stud. 68, 937–946 (2011).

    Google Scholar 

  44. Hartmann, I. et al. The Impact of Climate Change on Pastoral Societies of Somaliland (Candlelight for Health, 2009).

    Google Scholar 

  45. Majule, A. E., Kauzeni, A. S., Shishira, E. K., Mwansasu, S. & Gwambene, B. in Strengthening Local Agricultural Innovations to Adapt to Climate Change in Botswana, Malawi, South Africa and Tanzania (eds Maro, P. S. & Majule, A. E.) 208–223 (Univ. Dar es Salaam, 2009).

    Google Scholar 

  46. Kuruppu, N. & Liverman, D. Mental preparation for climate adaptation: the role of cognition and culture in enhancing adaptive capacity of water management in Kiribati. Glob. Environ. Chang. 21, 657–669 (2011).

    Google Scholar 

  47. Nicholson, S. E. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 17, 123–144 (2001).

    Google Scholar 

  48. Nielsen, J. Ø. & Reenberg, A. Temporality and the problem with singling out climate as a current driver of change in a small West African village. J. Arid Environ. 74, 464–474 (2010).

    Google Scholar 

  49. Nielsen, J. Ø. & Vigh, H. Adaptive lives: navigating the global food crisis in a changing climate. Glob. Environ. Chang. 22, 659–669 (2012).

    Google Scholar 

  50. Abiodun, B. J., Salami, A. T., Matthew, O. J. & Odedokun, S. Potential impacts of afforestation on climate change and extreme events in Nigeria. Clim. Dynam. 41, 277–293 (2013).

    Google Scholar 

  51. Young, I. R., Zieger, S. & Babanin, A. V. Global trends in wind speed and wave height. Science 332, 451–455 (2011).

    CAS  Google Scholar 

  52. Sowers, J., Vengosh, A. & Weinthal, E. Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Climatic Change 104, 599–627 (2011).

    Google Scholar 

  53. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Google Scholar 

  54. Speranza, C. I., Kiteme, B., Ambenje, P., Wiesmann, U. & Makali, S. Indigenous knowledge related to climate variability and change: insights from droughts in semi-arid areas of former Makueni District, Kenya. Climatic Change 100, 295–315 (2010).

    Google Scholar 

  55. Hofmeijer, I. et al. Community vulnerability to the health effects of climate change among indigenous populations in the Peruvian Amazon: a case study from Panaillo and Nuevo Progreso. Mitig. Adapt. Strategies Glob. Chang. 18, 957–978 (2013).

    Google Scholar 

  56. van der Valk, M. R. & Keenan, P. Climate Change, Water Stress, Conflict and Migration (UNESCO, 2012).

    Google Scholar 

  57. Padi, P. T., Di Baldassarre, G. & Castellarin, A. Floodplain management in Africa: large scale analysis of flood data. Phys. Chem. Earth 36, 292–298 (2011).

    Google Scholar 

  58. Nuorteva, P., Keskinen, M. & Varis, O. Water, livelihoods and climate change adaptation in the Tonle Sap Lake area, Cambodia: learning from the past to understand the future. J. Water Clim. Chang. 1, 87–101 (2010).

    Google Scholar 

  59. Becken, S., Lama, A. K. & Espiner, S. The cultural context of climate change impacts: perceptions among community members in the Annapurna Conservation Area, Nepal. Environ. Dev. 8, 22–37 (2013).

    Google Scholar 

  60. Petley, D. N. et al. Trends in landslide occurrence in Nepal. Natural Hazards 43, 23–44 (2007).

    Google Scholar 

  61. Diessner, C. It Will Rain if God Wills it: Local Perceptions of Climate Change in the Futa Tooro of Northern Senegal MA thesis, Univ. Missouri (2012).

    Google Scholar 

  62. O'Neill, C., Green, D. & Lui, W. How to make climate change research relevant for Indigenous communities in Torres Strait, Australia. Local Environ. 17, 1104–1120 (2012).

    Google Scholar 

  63. Knox, J., Hess, T., Daccache, A. & Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 7, 034032 (2012).

    Google Scholar 

  64. Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram J. S. I. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009).

    CAS  Google Scholar 

  65. Lama, S. & Devkota, B. Vulnerability of mountain communities to climate change and adaptation strategies. J. Agric. Environ. 10, 76–83 (2009).

    Google Scholar 

  66. Wang, L. The Vulnerability of Social-Environmental Systems and Farmers' Livelihood to Climate Change on China's Loess Plateau PhD thesis, Univ. New South Wales (2012).

    Google Scholar 

  67. Kirrane, C., Sharkey, C. & Naess, L. O. Shaping Strategies: Factors and Actors in Climate Change Adaptation. Lessons from Two-Year Case Studies in Africa and Latin America (Trocaire, 2012).

    Google Scholar 

  68. Reedy, D., Savo, V. & McClatchey, W. Traditional climatic knowledge: orchardists' perceptions of and adaptation to climate change in the Campania region (Southern Italy). Plant Biosyst. 148, 699–712 (2014).

    Google Scholar 

  69. Lescureux, N. et al. The king of the forest: local knowledge about European brown bears (Ursus arctos) and implications for their conservation in contemporary Western Macedonia. Conserv. Soc. 9, 189–201 (2011).

    Google Scholar 

  70. Lavrillier, A. Climate change among nomadic and settled Tungus of Siberia: continuity and changes in economic and ritual relationships with the natural environment. Polar Rec. 49, 260–271 (2013).

    Google Scholar 

  71. Keskitalo, E. C. H. & Kulyasova, A. A. The role of governance in community adaptation to climate change. Polar Res. 28, 60–70 (2009).

    Google Scholar 

  72. Carter, B. T. & Nielsen, E. A. Exploring ecological changes in Cook Inlet Beluga Whale habitat though traditional and local ecological knowledge of contributing factors for population decline. Marine Policy 35, 299–308 (2011).

    Google Scholar 

  73. Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

    Google Scholar 

  74. Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).

    Google Scholar 

  75. Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010).

    CAS  Google Scholar 

  76. Ashwill, M., Flora, C. & Flora, J. Building Community Resilience to Climate Change: Testing the Adaptation Coalition Framework in Latin America (World Bank, 2011).

    Google Scholar 

  77. Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    CAS  Google Scholar 

  78. Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    CAS  Google Scholar 

  79. Meier, W. N., Stroeve, J. & Gearheard, S. Bridging perspectives from remote sensing and Inuit communities on changing sea-ice cover in the Baffin Bay region. Ann. Glaciol. 44, 433–438 (2006).

    Google Scholar 

  80. Danielsen, F. et al. Testing focus groups as a tool for connecting indigenous and local knowledge on abundance of natural resources with science-based land management systems. Conserv. Lett. 7, 380–389 (2014).

    Google Scholar 

  81. Weatherhead, E., Gearheard, S. & Barry, R. G. Changes in weather persistence: insight from Inuit knowledge. Glob. Environ. Chang. 20, 523–528 (2010).

    Google Scholar 

  82. Buijs, C. Inuit perceptions of climate change in East Greenland. Études/Inuit/Studies 34, 39–54 (2010).

    Google Scholar 

  83. Savo, V., Caneva, G., McClatchey, W., Reedy, D. & Salvati, L. Combining environmental factors and agriculturalists' observations of environmental changes in the traditional terrace system of the Amalfi Coast (Southern Italy). AMBIO 43, 297–310 (2014).

    Google Scholar 

  84. Meze-Hausken, E. Contrasting climate variability and meteorological drought with perceived drought and climate change in northern Ethiopia. Clim. Res. 27, 19–31 (2004).

    Google Scholar 

  85. Hayati, D., Yazdanpanah, M. & Karbalaee, F. Coping with drought: the case of poor farmers of South Iran. Psychol. Dev. Soc. 22, 361–383 (2010).

    Google Scholar 

  86. Furberg, M., Evengård, B. & Nilsson, M. Facing the limit of resilience: perceptions of climate change among reindeer herding Sami in Sweden. Global Health Act. 4, 8417 (2011).

    Google Scholar 

  87. Von Platen-Hallermund, T. & Thorsen, A. M. Vulnerability and Climate Change Adaptation in Rural Vietnam MSc thesis, Univ. Roskilde (2010).

    Google Scholar 

  88. Chowdhury, S. R., Hossain, M. S., Shamsuddoha, M. & Khan, S. M. M. H. Coastal fishers' livelihood in peril: sea surface temperature and tropical cyclones in Bangladesh (CPRD, 2012).

    Google Scholar 

  89. Cook, J. et al. Quantifying the consensus on anthropogenic global warming in the scientific literature. Environ. Res. Lett. 8, 024024 (2013).

    Google Scholar 

  90. Palen, W. J. et al. Energy: consider the global impacts of oil pipelines. Nature 510, 465 (2014).

    Google Scholar 

  91. Crate, S. A. Gone the bull of winter? Grappling with the cultural implications of and anthropology's role(s) in global climate change. Curr. Anthropol. 49, 569–595 (2008).

    Google Scholar 

  92. Crate, S. A. in Water, Cultural Diversity, and Global Environmental Change. Emerging Trends, Sustainable Futures? (eds Johnston, B. R., Hiwasaki, L., Klaver, I. J., Castillo, A. R. & Strang, V.) 214–217 (Springer, 2012).

    Google Scholar 

  93. Papiez, C. Climate Change Implications for the Quileute and Hoh Tribes of Washington: A Multidisciplinary Approach to Assessing Climatic Disruptions to Coastal Indigenous Communities PhD thesis, Evergreen State College (2009).

    Google Scholar 

  94. Singh, R. K., Bhowmik, S. N. & Pandey, C. B. Biocultural diversity, climate change and livelihood security of the Adi community: grassroots conservators of Eastern Himalaya Arunachal Pradesh. Indian J. Tradit. Knowl. 10, 39–56 (2011).

    CAS  Google Scholar 

  95. Doyle, J. T., Redsteer, M. H. & Eggers, M. J. Exploring Effects of Climate Change on Northern Plains American Indian Health. Climatic Change 120, 643–655 (2013).

    Google Scholar 

  96. Garcia, D. T. The Interrelationship of Local and Global Events and the Changing Ecological and Socio-Economic States of the Sierra Tarahumara in Chihuahua, Mexico BSc thesis, Univ. Arizona (2009).

    Google Scholar 

  97. Shimola, K. & Krishnaveni, M. in On a Sustainable Future of the Earth's Natural Resources (ed. Ramkumar, M.) 509–516 (Springer, 2013).

    Google Scholar 

  98. Phuong, L. T. H. Climate Change and Farmers' Adaptation: A Case Study of Mixed-Farming Systems in the Coastal Area in Trieu Van Commune, Trieu Phong District, Quang Tri Province, Vietnam MSc thesis, HUAF (2011).

    Google Scholar 

  99. Zaheer, K. Community Vulnerability Assessment: Kharo Chan, Keti Bunder and Jiwani (World Wide Fund for Nature, 2012).

    Google Scholar 

Download references

Acknowledgements

This research was undertaken with the assistance of the Government of Canada/avec l'appui du gouvernement du Canada and the generous support of the Tula Foundation (Heriot Bay, British Columbia, Canada) through the Hakai Institute (Campbell River, British Columbia, Canada). Many thanks are also due to the Forest Ecology and Management Group at Simon Fraser University (Canada), the Hakai scholars (Hakai Institute), Dongya Yang (Simon Fraser University), Kevin M. Sampson (National Center for Atmospheric Research), Corinne Le Quéré (Tyndall Centre for Climate Change Research, University of East Anglia), Geert Jan van Oldenborgh (Koninklijk Nederlands Meteorologisch Instituut) and Trisalyn Nelson (University of Victoria) for their suggestions and comments.

Author information

Authors and Affiliations

Authors

Contributions

V.S. and D.L. conceptualized the research design and contributed equally to the writing of the manuscript. V.S. conducted the bibliographic search and analysed the data. J.P.B. carried out the GIS elaborations and contributed to the manuscript. K.E.K. and J.B. contributed to the climate model elaborations and the manuscript. K.L. contributed conceptually to the manuscript and helped with writing.

Corresponding author

Correspondence to V. Savo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4338 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savo, V., Lepofsky, D., Benner, J. et al. Observations of climate change among subsistence-oriented communities around the world. Nature Clim Change 6, 462–473 (2016). https://doi.org/10.1038/nclimate2958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing