Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Widespread range expansions shape latitudinal variation in insect thermal limits

Abstract

Current anthropogenic impacts, including habitat modification and climate change, may contribute to a sixth mass extinction1. To mitigate these impacts and slow further losses of biodiversity, we need to understand which species are most at risk and identify the factors contributing to current and future declines. Such information is often obtained through large-scale, comparative and biogeographic analysis of lineages or traits that are potentially sensitive to ongoing anthropogenic change—for instance to predict which regions are most susceptible to climate change-induced biodiversity loss2,3,4. However, for this approach to be generally successful, the underlying causes of identified geographical trends need to be carefully considered5. Here, I augment and reanalyse a global data set of insect thermal tolerances, evaluating the contribution of recent and contemporary range expansions to latitudinal variation in thermal niche breadth. Previous indications that high-latitude ectotherms exhibit broad thermal niches and high warming tolerances held only for species undergoing range expansions or invasions. In contrast, species with stable or declining geographic ranges exhibit latitudinally decreasing absolute thermal tolerances and no latitudinal variation in tolerance breadths. Thus, non-range-expanding species, particularly insular or endemic species, which are often of highest conservation priority, are unlikely to tolerate future climatic warming at high latitudes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Latitudinal trends in thermal tolerance for insects with differing biogeographic histories.

References

  1. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS  Article  Google Scholar 

  2. Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  Article  Google Scholar 

  3. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    CAS  Article  Google Scholar 

  4. Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).

    Article  Google Scholar 

  5. Chown, S. L., Slabber, S., McGeouch, M., Janion, C. & Leinaas, H. P. Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc. Biol. Sci. 274, 2531–2537 (2007).

    Article  Google Scholar 

  6. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. Biol. Sci. 278, 1823–1830 (2011).

    Article  Google Scholar 

  7. Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. Biol. Sci. 267, 739–745 (2000).

    CAS  Article  Google Scholar 

  8. Hoffmann, A. A., Chown, S. L. & Clusella-Trullas, S. Upper thermal limits in terrestrial ectotherms: how constrained are they? Funct. Ecol. 27, 934–949 (2013).

    Article  Google Scholar 

  9. Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    Article  Google Scholar 

  10. Diamond, S. E. et al. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Change Biol. 18, 448–456 (2012).

    Article  Google Scholar 

  11. Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  Google Scholar 

  12. Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    CAS  Article  Google Scholar 

  13. Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. Biol. Sci. 276, 1939–1948 (2009).

    Article  Google Scholar 

  14. Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12, 450–455 (2006).

    Article  Google Scholar 

  15. Suarez, A. V., Holway, D. A. & Case, T. J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc. Natl Acad. Sci. USA 98, 1095–1100 (2001).

    CAS  Article  Google Scholar 

  16. Bebber, D. P., Ramotowski, M. A. T. & Gurr, S. J. Crop pests and pathogens move polewards in a warming world. Nature Clim. Change 3, 985–988 (2013).

    Article  Google Scholar 

  17. Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  18. Lancaster, L. T., Dudaniec, R. Y., Hansson, B. & Svensson, E. I. Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. J. Biogeogr. 42, 1953–1963 (2015).

    Article  Google Scholar 

  19. Thomas, C. D. et al. Ecological and evolutionary processes at expanding range margins. Nature 411, 577–581 (2001).

    CAS  Article  Google Scholar 

  20. Clarke, A. Costs and consequences of evolutionary temperature adaptation. Trends Ecol. Evol. 18, 573–581 (2003).

    Article  Google Scholar 

  21. Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    Article  Google Scholar 

  22. Simberloff, D. The role of propagule pressure in biological invasions. Annu. Rev. Ecol. Evol. Syst. 40, 81–102 (2009).

    Article  Google Scholar 

  23. Lambrinos, J. G. How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85, 2061–2070 (2004).

    Article  Google Scholar 

  24. Lebouvier, M. et al. The significance of the sub-Antarctic Kerguelen Islands for the assessment of the vulnerability of native communities to climate change, alien insect invasions and plant viruses. Biol. Invasions 13, 1195–1208 (2011).

    Article  Google Scholar 

  25. Terblanche, J. S., Deere, J. A., Clusella-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. Biol. Sci. 274, 2935–2942 (2007).

    Article  Google Scholar 

  26. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Effects Models R package version 2.0-20 (2014); http://CRAN.R-project.org/package=lmerTest

    Google Scholar 

  27. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4 R package version 1.1-6 (2014); http://CRAN.R-project.org/package=lme4

    Google Scholar 

  28. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013); http://www.R-project.org

  29. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  30. Lefcheck, J. & Casallas, J. S. rsquared.glmm: R-squared for Generalized Linear Mixed-Effects Models R package version 0.2-4 (2014); https://github.com/jslefche/rsquared.glmm

    Google Scholar 

  31. Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) R package version 2.0-1 (2015); http://CRAN.R-project.org/package=AICcmodavg

    Google Scholar 

  32. Fox, J. & Weisberg, S. An R Companion to Applied Regression Vol. 29 (SAGE Publications, 2010).

    Google Scholar 

Download references

Acknowledgements

I thank the authors of previous studies on global variation in insect thermal tolerances6,8, who have generously provided open access use of their data sets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley T. Lancaster.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Tables 2, 3 and Fig 1. (PDF 456 kb)

Supplementary Information

Supplementary Table 1. (XLSX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lancaster, L. Widespread range expansions shape latitudinal variation in insect thermal limits. Nature Clim Change 6, 618–621 (2016). https://doi.org/10.1038/nclimate2945

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2945

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing