More extreme precipitation in the world’s dry and wet regions

  • An Addendum to this article was published on 01 February 2017


Intensification of the hydrological cycle is expected to accompany a warming climate1,2. It has been suggested that changes in the spatial distribution of precipitation will amplify differences between dry and wet regions3,4, but this has been disputed for changes over land5,6,7,8. Furthermore, precipitation changes may differ not only between regions but also between different aspects of precipitation, such as totals and extremes. Here we investigate changes in these two aspects in the world’s dry and wet regions using observations and global climate models. Despite uncertainties in total precipitation changes, extreme daily precipitation averaged over both dry and wet regimes shows robust increases in both observations and climate models over the past six decades. Climate projections for the rest of the century show continued intensification of daily precipitation extremes. Increases in total and extreme precipitation in dry regions are linearly related to the model-specific global temperature change, so that the spread in projected global warming partly explains the spread in precipitation intensification in these regions by the late twenty-first century. This intensification has implications for the risk of flooding as the climate warms, particularly for the world’s dry regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Precipitation changes in the dry and wet regions identified from observations.
Figure 2: Precipitation changes in the dry and wet regions identified from GCMs.
Figure 3: Simulated precipitation changes in dry and wet regions.
Figure 4: Precipitation changes as a function of global warming.

Change history

  • 01 February 2017

    This Letter has an addendum associated with it, for details see pdf.


  1. 1

    Allen, M. R. & Ingram, W. J. Constraints on future changes in climate and the hydrologic cycle. Nature 419, 224–232 (2002).

    CAS  Google Scholar 

  2. 2

    Wu, P., Christidis, N. & Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nature Clim. Change 3, 807–810 (2013).

    Article  Google Scholar 

  3. 3

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  4. 4

    Allan, R. P., Soden, B. J., John, V. O., Ingram, W. & Good, P. Current changes in tropical precipitation. Environ. Res. Lett. 5, 025205 (2010).

    Article  Google Scholar 

  5. 5

    Sun, F., Roderick, M. L. & Farquhar, G. D. Changes in the variability of global land precipitation. Geophys. Res. Lett. 39, L19402 (2012).

    Article  Google Scholar 

  6. 6

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nature Geosci. 7, 716–721 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).

    Article  Google Scholar 

  8. 8

    Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘wet-get-wetter, dry-get-drier’ scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article  Google Scholar 

  9. 9

    Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  10. 10

    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006).

    Google Scholar 

  11. 11

    Min, S-K., Zhang, X., Zwiers, F. W. & Hegerl, G. C. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  13. 13

    Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J. Geophys. Res. 118, 2473–2493 (2013).

    Google Scholar 

  14. 14

    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).

    Article  Google Scholar 

  15. 15

    Donat, M. G. et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J. Geophys. Res. 118, 2098–2118 (2013).

    Google Scholar 

  16. 16

    Durack, P. J., Wijffels, S. E. & Matear, R. J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455–458 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Chadwick, R., Boutle, I. & Martin, G. Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J. Clim. 26, 3803–3822 (2013).

    Article  Google Scholar 

  18. 18

    Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  19. 19

    O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Article  Google Scholar 

  20. 20

    Westra, S. et al. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 52, 522–555 (2014).

    Article  Google Scholar 

  21. 21

    O’Gorman, P. A. Sensitivity of tropical precipitation extremes to climate change. Nature Geosci. 5, 697–700 (2012).

    Article  Google Scholar 

  22. 22

    Wilcox, E. M. & Donner, L. J. The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model. J. Clim. 20, 53–69 (2007).

    Article  Google Scholar 

  23. 23

    Groisman, P. Y. et al. Trends in intense precipitation in the climate record. J. Clim. 18, 1326–1350 (2005).

    Article  Google Scholar 

  24. 24

    Fischer, E. M., Beyerle, U. & Knutti, R. Robust spatially aggregated projections of climate extremes. Nature Clim. Change 3, 1033–1038 (2013).

    Article  Google Scholar 

  25. 25

    Lenderink, G. & van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nature Geosci. 1, 511–514 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Zhang, X. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Liu, C. & Allan, R. P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 8, 034002 (2013).

    Article  Google Scholar 

  29. 29

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  30. 30

    Collins, M. et al. Climate Change 2013: The Physical Science Basis (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  31. 31

    Lambert, F. H. & Webb, M. J. Dependency of global mean precipitation on surface temperature. Geophys. Res. Lett. 35, L16706 (2008).

    Article  Google Scholar 

  32. 32

    Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C. & Min, S.-K. Attributing intensification of precipitation extremes to human influence. Geophys. Res. Lett. 40, 5252–5257 (2013).

    Article  Google Scholar 

  33. 33

    Stephens, G. L. et al. Dreary state of precipitation in global models. J. Geophys. Res. 115, D24211 (2010).

    Article  Google Scholar 

  34. 34

    Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Change 2, 851–870 (2011).

    Article  Google Scholar 

  35. 35

    Avila, F. B. et al. Systematic investigation of gridding-related scaling effects on annual statistics of daily temperature and precipitation maxima: a case study for south-east Australia. Weath. Clim. Extremes 9, 6–16 (2015).

    Article  Google Scholar 

  36. 36

    Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W. & Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J. Geophys. Res. 118, 1716–1733 (2013).

    Google Scholar 

  37. 37

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  38. 38

    Kendall, M. K. Rank Correlation Methods (Charles Griffin, 1975).

    Google Scholar 

Download references


This study was supported through the Australian Research Council grants CE110001028 and DE150100456. We thank the climate modelling groups contributing to CMIP5 for producing and making available their model output.

Author information




M.G.D. conceived the study; A.L.L., M.G.D. and N.M. performed the analyses. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Markus G. Donat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3570 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donat, M., Lowry, A., Alexander, L. et al. More extreme precipitation in the world’s dry and wet regions. Nature Clim Change 6, 508–513 (2016).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing