Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Greenhouse gas mitigation potentials in the livestock sector

Abstract

The livestock sector supports about 1.3 billion producers and retailers, and contributes 40–50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6–7.5 GtCO2e yr−1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: GHG emissions from global livestock for 1995–2005.
Figure 2: Baseline projections of GHG emissions for the main IPCC source categories for the entire agricultural sector.
Figure 3: Technical mitigation potentials of supply-side options for reducing emissions from the livestock sector.
Figure 4: The carbon sequestration potential of grazing lands.
Figure 5: Total abatement calorie cost (TACC) of mitigation policies.

References

  1. 1

    Livestock's Long Shadow: Environmental Issues and Options (FAO, 2006).

  2. 2

    Thornton, P. K. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B 365, 2853–2867 (2010).

    Article  Google Scholar 

  3. 3

    Herrero, M., Thornton, P. K., Gerber, P. & Reid, R. S. Livestock, livelihoods and the environment: understanding the trade-offs. Curr. Opin. Environ. Sust. 1, 111–120 (2009).

    Article  Google Scholar 

  4. 4

    The State of Food and Agriculture: Livestock in the Balance (FAO, 2009).

  5. 5

    Rosegrant, M. W. et al. in Agriculture at a Crossroads (eds McIntyre, B. D. et al.) 307–376 (Island, 2009).

    Google Scholar 

  6. 6

    Capper, J. L., Cady, R. A. & Bauman, D. E. The environmental impact of dairy production: 1944 compared with 2007. J. Anim. Sci. 87, 2160–2167 (2009).

    CAS  Article  Google Scholar 

  7. 7

    Smith, P. et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Glob. Change Biol. 19, 2285–2302 (2013).

    Article  Google Scholar 

  8. 8

    IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, S. et al.) Ch. 10 (Cambridge Univ. Press, 2006).

  9. 9

    Emission Database for Global Atmospheric Research (EDGAR) v.4.2 (JRC and PBL, accessed 21 September 2014); http://edgar.jrc.ec.europa.eu

  10. 10

    Global Anthropogenic Non-CO2 Greenhouse Gas Emissions: 1990–2020 (US EPA, 2006).

  11. 11

    Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  12. 12

    Tubiello, F. N. et al. The FAOSTAT database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 015009 (2013).

    Article  Google Scholar 

  13. 13

    Herrero, M. et al. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Greenhouse Gas Emissions From the Dairy Sector: A Life Cycle Assessment (FAO, 2010).

  15. 15

    Gerber, P. et al. Tackling Climate Change Through Livestock—A Global Assessment of Emissions and Mitigation Opportunities (FAO, 2013).

    Google Scholar 

  16. 16

    Bodirsky, B. L. et al. N2O emissions from the global agricultural nitrogen cycle — current state and future scenarios. Biogeosciences 9, 4169–4197 (2012).

    CAS  Article  Google Scholar 

  17. 17

    Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment. (FAO, 2013).

  18. 18

    Greenhouse Gas Emissions from Pig and Chicken Supply Chains—A Global Life Cycle Assessment (FAO, 2013).

  19. 19

    Fowler, D. et al. Atmospheric composition change: ecosystems–atmosphere interactions. Atmos. Environ. 43, 5193–5267 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geosci. 2, 659–662 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nature Clim. Change 2, 410–416 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Rypdal, K. & Winiwarter, W. Uncertainties in greenhouse gas emission inventories, evaluation, comparability and implications. Environ. Sci. Policy 4, 107–116 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Leip, A. et al. Evaluation of the Livestock Sector's Contribution to the EU Greenhouse Gas Emissions (GGELS) (Joint Research Centre, European Commission, 2010).

    Google Scholar 

  24. 24

    Monni, S., Perala, P. & Regina, K. Uncertainty in agricultural CH4 and N2O emissions from Finland — possibilities to increase accuracy in emission estimates. Mitig. Adapt. Strat. Glob. Change 12, 545–571 (2007).

    Article  Google Scholar 

  25. 25

    Weiss, F. & Leip, A. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agric, Ecosyst. Environ. 149, 124–134 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).

    Article  CAS  Google Scholar 

  27. 27

    Global Mitigation of Non-CO2 Greenhouse Gases: 2010–2030 (US EPA, 2013).

  28. 28

    Westhoek, H. et al. The Protein Puzzle (PBL, 2011).

    Google Scholar 

  29. 29

    Havlík, P. et al. Crop productivity and the global livestock sector: Implications for land use change and greenhouse gas emissions. Am. J. Agric. Econ. 95, 442–448 (2013).

    Article  Google Scholar 

  30. 30

    de Vries, M. and de Boer, I. J. M. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest. Sci. 128, 1–11 (2009).

    Article  Google Scholar 

  31. 31

    Cederberg, C., Hedenus, F., Wirsenius, S. & Sonesson, U. Trends in greenhouse gas emissions from consumption and production of animal food products: implications for long-term climate targets. Animal 7, 330–340 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Hristov, A. N. et al. Mitigation of Greenhouse Gas Emissions in Livestock Production. A Review of Technical Options for Non-CO2 Emissions (FAO, 2013).

    Google Scholar 

  33. 33

    Boadi, D., Benchaar, C., Chiquette, J. & Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can. J. Anim. Sci. 84, 319–335 (2004).

    Article  Google Scholar 

  34. 34

    Martin, C., Morgavi, D. P. & Doreau, M. Methane mitigation in ruminants: from microbe to the farm scale. Animal 4, 351–365 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Cottle, D. J., Nolan, J. V. & Wiedemann, S. G. Ruminant enteric methane mitigation: a review. Anim. Prod. Sci. 51, 491–514 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Hristov, A. N. et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl Acad. Sci. USA 112, 10663–10668 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Thornton, P. K. & Herrero, M. The potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. Proc. Natl Acad. Sci. USA 107, 19667–19672 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Ripple, W. J. et al. Ruminants, climate change and climate policy. Nature Clim. Change 4, 2–5 (2014).

    CAS  Article  Google Scholar 

  39. 39

    Hristov, A. N. Historic, pre-European settlement, and present-day contribution of wild ruminants to enteric methane emissions in the United States. J. Anim. Sci. 90, 1371–1375 (2012).

    CAS  Article  Google Scholar 

  40. 40

    Walsh, B. et al. New feed sources key to ambitious climate targets. Carbon Balance Manage. 10, 26 (2015).

    Article  CAS  Google Scholar 

  41. 41

    Smith P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Chadwick, D. et al. Manure management: implications for greenhouse gas emissions. Anim. Feed Sci. Technol. 166–167, 514–531 (2011).

    Article  CAS  Google Scholar 

  43. 43

    Chadwick, D. Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos. Environ. 39, 87–799 (2005).

    Article  CAS  Google Scholar 

  44. 44

    Thomsen, I. K., Pedersen, A. R., Nyord, T. & Petersen, S. O. Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agric. Ecosyst. Environ. 136, 227–235 (2010).

    CAS  Article  Google Scholar 

  45. 45

    Clemens, J., Trimborn, M., Weiland, P. & Amon, B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Environ. 112, 171–177 (2006).

    CAS  Article  Google Scholar 

  46. 46

    van Groenigen J. W. et al. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 263, 101–111 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Webb, J., Pain, B., Bittman, S. & Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—a review. Agric. Ecosyst. Environ. 137, 39–46 (2010).

    Article  Google Scholar 

  48. 48

    van Groeningen, J. W., Velthof, G. L., Oenema, O. & van Groeningen, K. J. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903–913 (2010).

    Article  CAS  Google Scholar 

  49. 49

    Smith, K. A. & Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manag. 20, 255–263 (2004).

    Article  Google Scholar 

  50. 50

    Snyder, C. S., Bruulsema, T. W., Jensen, T. L. & Fixen, P. E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 133, 247–266 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Clough T. J. et al. The mitigation potential of hippuric acid on N2O emissions from urine patches: an in situ determination of its effect. Soil Biol. Biochem. 41, 2222–2229 (2009).

    CAS  Article  Google Scholar 

  52. 52

    Betram J. E. et al. Hippuric acid and benzoic acid inhibition of urine derived N2O emissions from soil. Glob. Change Biol. 15, 2067–2077 (2009).

    Article  Google Scholar 

  53. 53

    Conant, R. T. & Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob. Biogeochem. Cycles 16, 1143–1152 (2002).

    Article  CAS  Google Scholar 

  54. 54

    Ojima, D. S. et al. Modeling the effects of climatic and CO2 changes on grassland storage of soil C. Water Air Soil Pollut. 70, 643–657 (1993).

    CAS  Article  Google Scholar 

  55. 55

    Reid, R. S. et al. Is it possible to mitigate greenhouse gas emissions in pastoral ecosystems of the tropics? Environ. Dev. Sust. 6, 91–109 (2004).

    Article  Google Scholar 

  56. 56

    Henderson, B. et al. Greenhouse gas mitigation potential of the world's grazing lands: modelling soil carbon and nitrogen fluxes of mitigation practices. Agric. Ecosyst. Environ. 207, 91–100 (2015).

    CAS  Article  Google Scholar 

  57. 57

    DeFries, R. & Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl Acad. Sci. USA 107, 19627–19632 (2010).

    CAS  Article  Google Scholar 

  58. 58

    Gill, M., Smith, P. and Wilkinson, J. M. Mitigating climate change: the role of domestic livestock. Animal 4, 323–333 (2010).

    CAS  Article  Google Scholar 

  59. 59

    Smith, P. Delivering food security without increasing pressure on land. Glob. Food Sec. 2, 18–23 (2013).

    Article  Google Scholar 

  60. 60

    Foresight The Future of Food and Farming (The Government Office for Science, 2011).

  61. 61

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    CAS  Article  Google Scholar 

  62. 62

    International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD, 2009); http://go.nature.com/O1GjwV

  63. 63

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  Google Scholar 

  64. 64

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  Article  Google Scholar 

  65. 65

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Article  Google Scholar 

  66. 66

    Valin, H. et al. Agricultural productivity and GHG emissions in developing countries: what future trade-offs between mitigation and food security? Environ. Res. Lett. 8, 035019 (2013).

    Article  CAS  Google Scholar 

  67. 67

    Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture (Royal Society, 2009).

  68. 68

    Nijdam, D., Rood, T. & Westhoek, H. The price of protein: review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy 37, 760–770 (2012).

    Article  Google Scholar 

  69. 69

    Valin, H. et al. The future of food demand: understanding differences in global economic models. Agric. Econ. 45, 51–67 (2014).

    Article  Google Scholar 

  70. 70

    Willett, W. C. Eat, Drink, and Be Healthy: the Harvard Medical School Guide to Healthy Eating (Simon and Schuster, 2001).

    Google Scholar 

  71. 71

    Stehfest, E. et al. Climate benefits of changing diet. Climatic Change 95, 83–102 (2009).

    CAS  Article  Google Scholar 

  72. 72

    Bajželj, B. et al. The importance of food demand management for climate mitigation. Nature Clim. Change 4, 924–929 (2014).

    Article  Google Scholar 

  73. 73

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    CAS  Article  Google Scholar 

  74. 74

    Hedenus, F., Wirsenius, S. & Johansson, D. J. The importance of reduced meat and dairy consumption for meeting stringent climate change targets. Climatic Change 124, 79–91 (2014).

    Article  Google Scholar 

  75. 75

    Westhoek, H. et al. Food choices, health and environment: effects of cutting Europe's meat and dairy intake. Glob. Environ. Change. 26, 126–135 (2014).

    Article  Google Scholar 

  76. 76

    Erb, K.-H., Haberl, H. & Plutzar, C. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 47, 260–269 (2012).

    Article  Google Scholar 

  77. 77

    Wirsenius, S., Hedenus, F. & Mohlin, K. Greenhouse gas taxes on animal food products: rationale, tax scheme and climate mitigation effects. Climatic Change 108, 159–184 (2011).

    Article  Google Scholar 

  78. 78

    Edjabou, L. D. & Smed, S. The effect of using consumption taxes on foods to promote climate friendly diets—the case of Denmark. Food Policy 39, 84–96 (2013).

    Article  Google Scholar 

  79. 79

    Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    Article  CAS  Google Scholar 

  80. 80

    Edenhofer, O. et al. (eds) Climate Change 2014: Mitigation of Climate Change (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  81. 81

    Smith, P. et al. in Climate Change 2007: Mitigation of Climate Change (eds Metz, B. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  82. 82

    Golub, A. et al. Global climate policy impacts on livestock, land use, livelihoods, and food security. Proc. Natl Acad. Sci. USA 110, 20894–20899 (2013).

    CAS  Article  Google Scholar 

  83. 83

    Key, N. & Tallard, G. Mitigating methane emissions from livestock: a global analysis of sectoral policies. Climatic Change, 12, 387–414 (2012).

    Article  Google Scholar 

  84. 84

    Van Doorslaer, B. et al. An Economic Assessment of GHG Mitigation Policy Options for EU Agriculture (Joint Research Centre, European Commission, 2015).

    Google Scholar 

  85. 85

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    CAS  Article  Google Scholar 

  86. 86

    Stehfest, E., Berg, M. V. D., Woltjer, G., Msangi, S. & Westhoek, H. Options to reduce the environmental effects of livestock production - Comparison of two economic models. Agric. Syst. 114, 38–53 (2013).

    Article  Google Scholar 

  87. 87

    Cohn, A. et al. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation. Proc. Natl Acad. Sci. USA 111, 7236–7241 (2014).

    CAS  Article  Google Scholar 

  88. 88

    Herrero, M. et al. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science 327, 822–825 (2010).

    CAS  Article  Google Scholar 

  89. 89

    Vervoort, J. et al. Challenges to scenario-guided adaptive action on food security under climate change. Glob. Environ. Change 28, 383–394 (2014).

    Article  Google Scholar 

  90. 90

    Garnett, T., Mathewson, S., Angelides, P. & Borthwick, F. Policies and Actions to Shift Eating Patterns. What Works? (Food and Climate Research Network, 2015).

    Google Scholar 

  91. 91

    Conant, R. T., Paustian, K. & Elliott, E. T. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Appl. 11, 343–355 (2001).

    Article  Google Scholar 

  92. 92

    Carvalho, J. L. N. et al. Potential of soil carbon sequestration in different biomes of Brazil. Rev. Bras. Cienc. Solo 34, 277–289 (2010).

    CAS  Article  Google Scholar 

  93. 93

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    CAS  Article  Google Scholar 

  94. 94

    Wang, S. et al. Management and land use change effects on soil carbon in northern China's grasslands: a synthesis. Agric. Ecosyst. Environ. 142, 329–340 (2011).

    Article  Google Scholar 

  95. 95

    Follett, R. F. & Schumann, G. E. in Grassland: A Global Resource (ed. McGilloway, D. A.) 264–277 (Wageningen, 2005).

    Google Scholar 

  96. 96

    Schuman, J. E., Janzen, H. H. & Herrick, J. E. Soil carbon sequestration and potential carbon sequestration in rangelands. Environ. Pollut. 116, 391–396 (2002).

    CAS  Article  Google Scholar 

  97. 97

    Morgan, J. et al. Carbon sequestration in agricultural lands of the United States. J. Soil Water Cons. 65, 6–13 (2011).

    Article  Google Scholar 

  98. 98

    Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manage. 33, 528–544, (2003).

    Google Scholar 

  99. 99

    Bellarby, J. et al. Livestock greenhouse gas emissions and mitigation potential in Europe. Glob. Change Biol. 19, 3–18 (2013).

    Article  Google Scholar 

  100. 100

    Fitton, N. et al. Greenhouse gas mitigation potential of agricultural land in Great Britain. Soil Use Manage. 27, 491–501 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This paper constitutes an output of the Belmont Forum/FACCE-JPI funded DEVIL project (NE/M021327/1). Financial support from the CGIAR Program on Climate Change, Agriculture and Food Security (CCAFS) and the EU-FP7 AnimalChange project is also recognized. P.K.T. acknowledges the support of a CSIRO McMaster Research Fellowship.

Author information

Affiliations

Authors

Contributions

M.H. conceived the study and prepared the manuscript. All authors analysed data and contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Mario Herrero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1083 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrero, M., Henderson, B., Havlík, P. et al. Greenhouse gas mitigation potentials in the livestock sector. Nature Clim Change 6, 452–461 (2016). https://doi.org/10.1038/nclimate2925

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing