Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Combining satellite data for better tropical forest monitoring

Implementation of policies to reduce forest loss challenges the Earth observation community to improve forest monitoring. An important avenue for progress is the use of new satellite missions and the combining of optical and synthetic aperture radar sensor data.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current and anticipated medium-resolution optical and synthetic aperture radar (SAR) missions to support worldwide forest monitoring.

References

  1. Romijn, E. et al. Forest Ecol. Manage. 352, 109–123 (2015).

    Article  Google Scholar 

  2. Da Ponte, E. et al. Int. J. Remote Sens. 36, 3196–3242 (2015).

    Article  Google Scholar 

  3. Souza, C. M. et al. Remote Sens. 5, 5493–5513 (2013).

    Article  Google Scholar 

  4. Potapov, P. V. et al. Remote Sens. Environ. 122, 106–116 (2012).

    Article  Google Scholar 

  5. Hansen, M. et al. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  6. Kim, D.-H. et al. Remote Sens. Environ. 155, 178–193 (2014).

    Article  Google Scholar 

  7. De Sy, V. et al. Curr. Opin. Environ. Sustain. 4, 696–706 (2012).

    Article  Google Scholar 

  8. Sannier, C., McRoberts, R. E., Fichet, L.-V. & Makaga, E. M. K. Remote Sens. Environ. 151, 138–148 (2014).

    Article  Google Scholar 

  9. Shimada, M. et al. Remote Sens. Environ. 155, 13–31 (2014).

    Article  Google Scholar 

  10. Lehmann, E. A. et al. Remote Sens. Environ. 156, 335–348 (2015).

    Article  Google Scholar 

  11. Reiche, J., Verbesselt, J., Hoekman, D. & Herold, M. Remote Sens. Environ. 156, 276–293 (2015).

    Article  Google Scholar 

  12. Reiche, J., de Bruin, S., Hoekman, D. H., Verbesselt, J. & Herold, M. Remote Sens. 7, 4973–4996 (2015).

    Article  Google Scholar 

  13. Birdsey, R. et al. Carbon Manag. 4, 519–537 (2013).

    Article  CAS  Google Scholar 

  14. Pelletier, J. & Goetz, S. J. Environ. Res. Lett. 10, 021001 (2015).

    Article  Google Scholar 

  15. Achyar, E., Schmidt-Vogt, D. & Shivakoti, G. P. Environ. Dev. 13, 4–17 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Global Forest Observation Initiative (GFOI) research and development programme and the sponsor of Global Observations of Forest Cover and Land Dynamics (GOFC-GOLD). The work of J.R. and M.H. was funded by the European Commission Horizon 2020 BACI project (grant agreement 640176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Herold.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reiche, J., Lucas, R., Mitchell, A. et al. Combining satellite data for better tropical forest monitoring. Nature Clim Change 6, 120–122 (2016). https://doi.org/10.1038/nclimate2919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing