A decision science approach for integrating social science in climate and energy solutions


The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Climate Central's Surging Seas Risk Finder for New York City.
Figure 2: Risk-of-bias assessment for 32 studies of in-home displays, dynamic pricing and home automation systems.
Figure 3: A screenshot showing simulated appliances with specific feedback.


  1. 1

    Pasqualetti, M. J. Opposing wind energy landscapes: a search for common cause. Ann. Assoc. Am. Geogr. 101, 907–917 (2011).

    Article  Google Scholar 

  2. 2

    Fowlie, M., Greenstone, M. & Wolfram, C. D. Are the non-monetary costs of energy efficiency investments large? Understanding low take-up of a free energy efficiency program. Am. Econ. Rev. 105, 201–204 (2015).

    Article  Google Scholar 

  3. 3

    Sorrell, S., Dimitropoulos, J. & Sommerville, M. Empirical estimates of the direct rebound effect: a review. Energy Policy 37, 1356–1371 (2009).

    Article  Google Scholar 

  4. 4

    Attari, S. Z, DeKay, M. L. Davidson, C. I. & Bruine De Bruin, W. Public perceptions of energy consumption and savings. Proc. Natl Acad. Sci. USA 107, 16054–16059 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Dietz, T. Narrowing the US energy efficiency gap. Proc. Natl Acad. Sci. USA 107, 16007–16008 (2010).

    CAS  Article  Google Scholar 

  6. 6

    Dietz, T. Understanding environmentally significant consumption. Proc. Natl Acad. Sci. USA 111, 5067–5068 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Min, J., Azevedo, I. L., Michalek, J. & Bruine de Bruin, W. Labeling energy cost on light bulbs lowers implicit discount rates. Ecol. Econ. 97, 42–50 (2014).

    Article  Google Scholar 

  8. 8

    Edwards, W. The theory of decision making. Psychol. Bull. 51, 380–417 (1954).

    CAS  Article  Google Scholar 

  9. 9

    Yates, J. F. Judgment and Decision Making (Prentice Hall, 1989).

    Google Scholar 

  10. 10

    Von Winterfeldt, D. & Edwards, W. Decision Analysis and Behavioral Research (Cambridge Univ., 1986).

    Google Scholar 

  11. 11

    Bruine de Bruin, W. & Krishnamurti, T. in Delivering Energy Policy in the EU and US: A Multi-Disciplinary Reader (eds Heffron, R. & Little, G) (Edinburgh Univ., 2015).

    Google Scholar 

  12. 12

    Wong-Parodi, G. & Strauss, B. H. Team science for science communication. Proc. Natl Acad. Sci. USA 111, 13658–13663 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Dietz, T. Bringing values and deliberation to science communication. Proc. Natl Acad. Sci. USA 110, 14081–14087 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Dietz, T. & Stern, P. Public Participation in Environmental Assessment and Decision Making (National Academy, 2008).

    Google Scholar 

  15. 15

    Fischhoff, B. The sciences of science communication. Proc. Natl Acad. Sci. USA 110, 14033–14039 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Fischhoff, B. The realities of cost-risk-benefit analysis. Science 350, 527 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Raiffa, H. Decision Analysis: Introductory Lectures on Choices Under Uncertainty (Addison-Wesley, 1968)

    Google Scholar 

  18. 18

    Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units (Environmental Protection Agency, 2015); http://go.nature.com/5QFTxw

  19. 19

    The National Flood Insurance Program (Federal Emergency Management Agency, 2015); http://www.fema.gov/national-flood-insurance-program

  20. 20

    Smith, A. B. & Katz, R. W. US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat. Hazards 67, 387–410 (2013).

    Article  Google Scholar 

  21. 21

    Grinsted, A., Moore, J. C. & Jevrejeva, S. Projected Atlantic hurricane surge threat from rising temperatures. Proc. Natl Acad. Sci. USA 110, 5369–5373 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Holland, G. & Bruyère, C. L. Recent intense hurricane response to global climate change. Clim. Dyn. 42, 617–627 (2014).

    Article  Google Scholar 

  23. 23

    Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth's Future 2, 383–406 (2014).

    Article  Google Scholar 

  24. 24

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 33–115 (Cambridge Univ. Press, 2013).

  25. 25

    Crowell, M. et al. in Coastal Hazards 151–183 (Springer, 2013).

    Google Scholar 

  26. 26

    Blake, E. S. et al. Tropical Cyclone Report: Hurricane Sandy (National Oceanic Atmospheric Administration, 2013).

    Google Scholar 

  27. 27

    Federal Actions for a Climate Resilient Nation: Progress Report (Interagency Climate Change Adaptation Task Force, 2011).

  28. 28

    McDaniels, T. L., Gregory, R. S. & Fields, D. Democratizing risk management: Successful public involvement in local water management decisions. Risk Anal. 19, 497–510 (1999).

    Google Scholar 

  29. 29

    Samuels, P., Klijn, F. & Dijkman, J. An analysis of the current practice of policies on river flood risk management in different countries. Irrig. Drain. 55, S141–S150 (2006).

    Article  Google Scholar 

  30. 30

    Two Centuries of Experience in Water Resource Management: A Dutch–US Retrospective (US Army Corp of Engineers, 2014); http://go.nature.com/NYzxbG

  31. 31

    Kreibich, H., Thieken, A. H., Petrow, T., Müller, M. & Merz, B. Flood loss reduction of private households due to building precautionary measures — lessons learned from the Elbe flood in August 2002. Nat. Hazard. Earth Sys. 5, 117–126 (2005).

    Article  Google Scholar 

  32. 32

    Olfert, A. & Schanze J. in Flood Risk Management: Research and Practice (eds Samuels, P. et al.) (Taylor & Francis, 2008).

    Google Scholar 

  33. 33

    Geels, F., Berkhout, F. & van Vuuren, D. Bridging analytical approaches for low-carbon transitions. Nature Clim. Change http://dx.doi.org/10.1038/nclimate2980 (2016).

  34. 34

    2009 Smart Grid System Report (US Department of Energy, 2009).

  35. 35

    Energy Technology Perspectives: Scenarios and Strategies to 2050 (International Energy Agency, 2010).

  36. 36

    The Recovery Act: Transforming the American Economy Through Innovation (Executive Office of the President of the United States, 2010).

  37. 37

    Pratt, R. G. et al. The Smart Grid: An Estimation of the Energy and CO2 Benefits (US Department of Energy, 2011).

    Google Scholar 

  38. 38

    The Green Grid Energy Savings and Carbon Emissions Reductions Enabled by a Smart Grid (Electric Power Research Institute, 2008).

  39. 39

    Schot, J., Kanger, L. & Verbong, G. Roles of users in shaping transitions to new energy systems. Nature Energy 1, 16054 (2016).

    Article  Google Scholar 

  40. 40

    Sovacool, B. K., Heffron, R. J., McCauley, D. & Goldthau, A. Energy decisions reframed as justice and ethical concerns. Nature Energy 1, 16024 (2016).

    Article  Google Scholar 

  41. 41

    Fischhoff, B. & Davis, A. L. Communicating scientific uncertainty. Proc. Natl Acad. Sci. USA 111, 13664–13671 (2014).

    CAS  Article  Google Scholar 

  42. 42

    Morgan, M. G. Use (and abuse) of expert elicitation in support of decision making for public policy. Proc. Natl Acad. Sci. USA 111, 7176–7184 (2014).

    CAS  Article  Google Scholar 

  43. 43

    2012 Commercial Buildings Energy Consumption Survey Form EIA-871A (US Energy Information Administration, Office of Energy Consumption and Efficiency Statistics, 2012); http://go.nature.com/zwTdTz

  44. 44

    Jaffe, A. B. & Stavins, R. N. The energy-efficiency gap: what does it mean? Energy Policy 22, 804–810 (1994).

    Article  Google Scholar 

  45. 45

    Shama, A. Energy conservation in US buildings: solving the high potential/low adoption paradox from a behavioural perspective. Energy Policy 11, 148–167 (1983).

    Article  Google Scholar 

  46. 46

    Kahneman, D. Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).

    Google Scholar 

  47. 47

    Stern, P. C. et al. Opportunities and insights for reducing fossil fuel consumption by households and organizations. Nature Energy 1, 16043 (2016).

    Article  Google Scholar 

  48. 48

    Morgan, M. G. et al. Risk Communication: A Mental Models Approach (Cambridge Univ., 2002).

    Google Scholar 

  49. 49

    Bruine de Bruin, W. & Bostrom, A. Assessing what to address in science communication. Proc. Natl Acad. Sci. USA 110, 14062–14068 (2013).

    CAS  Article  Google Scholar 

  50. 50

    Poulton, E. C. The new psychophysics: six models for magnitude estimation. Psychol. Bull. 69, 1–19 (1968).

    Article  Google Scholar 

  51. 51

    Poulton, E. C. Behavioral Decision Theory: A New Approach (Cambridge Univ., 1994).

    Google Scholar 

  52. 52

    Woodworth, R. S. & Schlossberg, H. Experimental Psychology (Holt, 1954).

    Google Scholar 

  53. 53

    Fischhoff, B. in Handbook of Environmental Economics (eds Mäler, K. G. & Vincent, J.) 937–968 (Elsevier, 2005).

    Google Scholar 

  54. 54

    O'Hagan, A. et al. Uncertain Judgments (Wiley, 2006).

    Google Scholar 

  55. 55

    Slovic, P., Fischhoff, B. & Lichtenstein, S. Rating the risks. Environ. Sci. Policy Sus. Dev. 21, 14–39 (1979).

    Article  Google Scholar 

  56. 56

    Murphy, A. H., Lichtenstein, S., Fischhoff, B. & Winkler, R. L. Misinterpretations of precipitation probability forecasts. Bull. Am. Meteorol. Soc. 61, 695–701 (1980).

    Article  Google Scholar 

  57. 57

    Bartlett, F. C. Remembering: An Experimental and Social Study (Cambridge Univ., 1932).

    Google Scholar 

  58. 58

    Gentner, D. & Stevens, A. L. Mental Models (LEA, 1983)

    Google Scholar 

  59. 59

    Johnson-Laird, P. N. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness 1st edn (Harvard Univ., 1983).

    Google Scholar 

  60. 60

    Lee, T. Urban neighborhood as a socio-spatial schema. Hum. Relat. 21, 241–267 (1968).

    Article  Google Scholar 

  61. 61

    Sterman, J. D. & Sweeney, L. B. Cloudy skies: assessing public understanding of global warming. Syst. Dyn. Rev. 18, 207–240 (2002).

    Article  Google Scholar 

  62. 62

    Ericsson, A. & Simon, H. A. Verbal Reports as Data (MIT, 1994).

    Google Scholar 

  63. 63

    Fischhoff, B. Value elicitation: is there anything in there? Am. Psychol. 46, 835–847 (1991).

    Article  Google Scholar 

  64. 64

    Schwarz, N. Self reports. Am. Psychol. 54, 93–105 (1999).

    Article  Google Scholar 

  65. 65

    Trope, Y. & Liberman, N. Construal-level theory of psychological distance. Psychol. Rev. 117, 440–463 (2010).

    Article  Google Scholar 

  66. 66

    Wong-Parodi, G., Fischhoff, B. & Strauss, B. A method to evaluate the usability of interactive climate change impact decision aids. Clim. Change 126, 485–493 (2014).

    Article  Google Scholar 

  67. 67

    Maglio, S. J., Trope, Y. & Liberman, N. The common currency of psychological distance. Psychol. Sci. 22, 278–282 (2013).

    Google Scholar 

  68. 68

    Spence, A., Poortinga, W. & Pidgeon, N. The psychological distance of climate change. Risk Anal. 32, 957–972 (2012).

    Article  Google Scholar 

  69. 69

    Wong-Parodi, G. & Fischhoff, B. The impacts of political cues and practical information on climate change decisions. Environ. Res. Lett. 10, 034004 (2015).

    Article  Google Scholar 

  70. 70

    McCright, A. M. & Dunlap, R. E. The politicization of climate change and polarization in the American public's views of global warming. Sociol. Quart. 52, 155–194 (2011).

    Article  Google Scholar 

  71. 71

    Oreskes, N. & Conway, E. M. Merchants of Doubt (Bloomsbury, 2010).

    Google Scholar 

  72. 72

    Hardisty, D. J., Johnson, E. J. & Weber, E. U. A dirty word or a dirty world? Attribute framing, political affiliation, and query theory. Psychol. Sci. 21, 86–92 (2010).

    Article  Google Scholar 

  73. 73

    Hart, P. S. & Nisbet, M. C. Boomerang effects in science communication: how motivated reasoning and identity cues amplify opinion polarization about climate mitigation policies. Commun. Res. 39, 701–723 (2012).

    Article  Google Scholar 

  74. 74

    Nisbet, M. C. Communicating climate change: why frames matter for public engagement. Environ. Sci. Policy Sus. Dev. 51, 12–23 (2009).

    Article  Google Scholar 

  75. 75

    Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).

    Article  Google Scholar 

  76. 76

    Fiske, S. T. & Neuberg, S. L. A continuum of impression formation, from category-based to individuating processes: influences of information and motivation on attention and interpretation. Adv. Exp. Social Psychol. 23, 1–74 (1990).

    Google Scholar 

  77. 77

    Kunda, Z. The case for motivated reasoning. Psychol. Bull. 108, 480–498 (1990).

    CAS  Article  Google Scholar 

  78. 78

    Lundgren, S. R. & Prislin, R. Motivated cognitive processing and attitude change. Pers. Social Psychol. Bull. 24, 715–726 (1998).

    Article  Google Scholar 

  79. 79

    Taber, C. S. & Lodge, M. Motivated skepticism in the evaluation of political beliefs. Am. J. Polit. Sci. 50, 755–769 (2006).

    Article  Google Scholar 

  80. 80

    Dietz, T., Leshko, C. & McCright, A. M. Politics shapes individual choices about energy efficiency. Proc. Natl Acad. Sci. USA 110, 9191–9192 (2013).

    CAS  Article  Google Scholar 

  81. 81

    Gromet, D. M., Kunreuther, H. & Larrick, R. P. Political ideology affects energy efficiency attitudes and choices. Proc. Natl Acad. Sci. USA 110, 9314–9319 (2013).

    CAS  Article  Google Scholar 

  82. 82

    Barringer, F. New electricity meters stir fears. The New York Times (30 January 2011).

    Google Scholar 

  83. 83

    Sullivan, C. & Kahn, D. Smart grid: Calif. agency mulls 'opt out' or wired substitutes as fallout persists. Greenwire (14 January 2011).

  84. 84

    Krishnamurti, T. et al. Preparing for smart grid technologies: a behavioral decision research approach to understanding consumer expectations about smart meters. Energy Policy 41, 790–797 (2012).

    Article  Google Scholar 

  85. 85

    Fischhoff, B., Brewer, N. & Downs, J. S. (eds) Communicating Risks and Benefits: An Evidence-Based User's Guide (FDA, 2011).

    Google Scholar 

  86. 86

    Lin, J., Newman, M. W., Hong, J. I. & Landay, J. A. in Proc. SIGCHI Conf. Human Factors in Computing Systems 510–517 (ACM, 2000).

    Google Scholar 

  87. 87

    Keil, F. C. Folkscience: coarse interpretations of a complex reality. Trends Cogn. Sci. 7, 368–373 (2003).

    Article  Google Scholar 

  88. 88

    Kempton, W. & Montgomery, L. Folk quantification of energy. Energy Int. J. 7, 817–827 (1982).

    Article  Google Scholar 

  89. 89

    Kempton, W. in Cultural Models in Language and Thought (eds Holland, D. & Quinn, N.) 222–242 (Cambridge Univ., 1987).

    Google Scholar 

  90. 90

    Wood, G. & Newborough, M. Dynamic energy-consumption indicators for domestic appliances: environment, behaviour and design. Energ. Buildings 35, 821–841 (2003).

    Article  Google Scholar 

  91. 91

    Davis, A. L., Krishnamurti, T., Fischhoff, B. & Bruine de Bruin, W. Setting a standard for electricity pilot studies. Energy Policy 62, 401–409 (2013).

    Article  Google Scholar 

  92. 92

    Turner, R., Spiegelhalter, D., Smith, G. & Thompson, S. Bias modelling in evidence synthesis. J. R. Stat. Soc. 172, 21–47 (2009).

    Article  Google Scholar 

  93. 93

    Krishnamurti, T., Davis, A. L., Wong-Parodi, G., Wang, J. & Canfield, C. Creating an in-home display: experimental evidence and guidelines for design. Appl. Energy 108, 448–458 (2013).

    Article  Google Scholar 

  94. 94

    Karjalainen, S. Consumer preferences for feedback on household electricity consumption. Energ. Buildings 43, 458–467 (2011).

    Article  Google Scholar 

  95. 95

    Cialdini R. B. & Trost M. R. in The Handbook of Social Psychology 4th edn (eds Gilbert, D. T. et al.) Part II, 151–192 (McGraw-Hill, 1998).

    Google Scholar 

  96. 96

    Schwartz, D., Fischhoff, B., Krishnamurti, T. & Sowell, F. The Hawthorne effect and energy awareness. Proc. Natl Acad. Sci. USA 110, 15242–15246 (2013).

    CAS  Article  Google Scholar 

  97. 97

    Leamer, E. Let's take the con out of econometrics. Am. Econ. Rev. 72, 31–43 (1983).

    Google Scholar 

Download references


The research reported here and preparation of this manuscript were supported by the National Science Foundation to the Center for Climate and Energy Decision Making (SES-0949710), the Department of Energy (DE-OE0000300, DE-OE0000204), Skoll Global Threats Fund, the Carnegie Electricity Industry Center, Richard King Mellon Foundation, and Rockefeller Foundation. D.S. was supported by FONDECYT 11140374, the Complex Engineering Systems Institute (ICM: P-05-004-F, CONICYT: FB016) and the Business Intelligence Research Center (CEINE) of the University of Chile. The views expressed are those of the authors.

Author information




All authors contributed to the writing of the paper and the research reported in it.

Corresponding author

Correspondence to Gabrielle Wong-Parodi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong-Parodi, G., Krishnamurti, T., Davis, A. et al. A decision science approach for integrating social science in climate and energy solutions. Nature Clim Change 6, 563–569 (2016). https://doi.org/10.1038/nclimate2917

Download citation

Further reading