Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Industrial-era global ocean heat uptake doubles in recent decades

Abstract

Formal detection and attribution studies have used observations and climate models to identify an anthropogenic warming signature in the upper (0–700 m) ocean1,2,3,4. Recently, as a result of the so-called surface warming hiatus, there has been considerable interest in global ocean heat content (OHC) changes in the deeper ocean, including natural and anthropogenically forced changes identified in observational5,6,7, modelling8,9 and data re-analysis10,11 studies. Here, we examine OHC changes in the context of the Earth’s global energy budget since early in the industrial era (circa 1865–2015) for a range of depths. We rely on OHC change estimates from a diverse collection of measurement systems including data from the nineteenth-century Challenger expedition12, a multi-decadal record of ship-based in situ mostly upper-ocean measurements, the more recent near-global Argo floats profiling to intermediate (2,000 m) depths13, and full-depth repeated transoceanic sections5. We show that the multi-model mean constructed from the current generation of historically forced climate models is consistent with the OHC changes from this diverse collection of observational systems. Our model-based analysis suggests that nearly half of the industrial-era increases in global OHC have occurred in recent decades, with over a third of the accumulated heat occurring below 700 m and steadily rising.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simulated and observed industrial-era changes in global OHC for three depth ranges (0–700 m, 700–2,000 m and >2,000 m).
Figure 2: Simulated and observed global OHC linear trends (35 year; 1971–2005).
Figure 3: Observed and simulated industrial-era ocean heat uptake.
Figure 4: Ocean heat uptake (percentage of total 1865–2015 change) for the CMIP5 MMM layers.

Similar content being viewed by others

References

  1. Barnett, T. P. et al. Penetration of human-induced warming into the world’s oceans. Science 309, 284–287 (2005).

    Article  CAS  Google Scholar 

  2. Palmer, M. D., Good, S. A., Haines, K., Rayner, N. A. & Stott, P. A. A new perspective on warming of the global oceans. Geophys. Res. Lett. 36, L20709 (2009).

    Article  Google Scholar 

  3. Gleckler, P. J. et al. Human-induced global ocean warming on multidecadal timescales. Nature Clim. Change 2, 524–529 (2012).

    Article  Google Scholar 

  4. Pierce, D. W., Gleckler, P. J., Barnett, T. P., Santer, B. D. & Durack, P. J. The fingerprint of human-induced changes in the ocean’s salinity and temperature fields. Geophys. Res. Lett. 39, L21704 (2012).

    Article  Google Scholar 

  5. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  6. Loeb, N. G. et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geosci. 5, 110–113 (2012).

    Article  CAS  Google Scholar 

  7. Llovel, W., Willis, J. K., Landerer, F. W. & Fukumori, I. Nature Clim. Change 4, 1031–1035 (2014).

    Article  Google Scholar 

  8. Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. X. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360–364 (2011).

    Article  Google Scholar 

  9. Palmer, M. D. & McNeall, D. J. Internal variability of Earth’s energy budget simulated by CMIP5 climate models. Environ. Res. Lett. 9, 034016 (2014).

    Article  Google Scholar 

  10. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  11. Wunsch, C. & Heimbach, P. Bidecadal thermal changes in the Abyssal Ocean. J. Phys. Oceanogr. 44, 2013–2030 (2014).

    Article  Google Scholar 

  12. Roemmich, D., Gould, W. J. & Gilson, J. 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nature Clim. Change 2, 425–428 (2012).

    Article  Google Scholar 

  13. Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nature Clim. Change 5, 240–245 (2015).

    Article  Google Scholar 

  14. Levitus, S., Antonov, J. & Boyer, T. Warming of the world ocean, 1955–2003. Geophys. Res. Lett. 32, L02604 (2005).

    Google Scholar 

  15. Rhein, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 3, 255–315 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  16. Domingues, C. M. et al. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453, 1090–1093 (2008).

    Article  CAS  Google Scholar 

  17. Sokolov, A. P., Forest, C. E. & Stone, P. H. Sensitivity of climate change projections to uncertainties in the estimates of observed changes in deep-ocean heat content. Clim. Dynam. 34, 735–745 (2010).

    Article  Google Scholar 

  18. Church, J. A. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 13, 1137–1206 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  19. Gregory, J. M. et al. Climate models without preindustrial volcanic forcing underestimate historical ocean thermal expansion. Geophys. Res. Lett. 40, 1600–1604 (2013).

    Article  Google Scholar 

  20. Ishii, M. & Kimoto, M. Re-evaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65, 287–299 (2009).

    Article  Google Scholar 

  21. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  22. Lyman, J. M. & Johnson, G. C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim. 27, 1945–1957 (2014).

    Article  Google Scholar 

  23. Abraham, J. P. et al. A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  24. Durack, P. J., Gleckler, P. J., Landerer, F. W. & Taylor, K. E. Quantifying underestimates of long-term upper-ocean warming. Nature Clim. Change 4, 999–1005 (2014).

    Article  Google Scholar 

  25. Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185–189 (2014).

    Article  CAS  Google Scholar 

  26. Cheng, L. & Zhu, J. Artifacts in variations of ocean heat content induced by the observation system changes. Geophys. Res. Lett. 41, 7276–7283 (2014).

    Article  Google Scholar 

  27. Zhang, R. et al. Have aerosols caused the observed Atlantic multidecadal variability? J. Atmos. Sci. 70, 1135–1144 (2013).

    Article  Google Scholar 

  28. Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).

    Article  Google Scholar 

  29. Gregory, J., Banks, H., Stott, P., Lowe, J. & Palmer, M. Simulated and observed decadal variability in ocean heat content. Geophys. Res. Lett. 31, L15312 (2004).

    Article  Google Scholar 

  30. Pierce, D. W. et al. Anthropogenic warming of the oceans: observations and model results. J. Clim. 19, 1873–1900 (2006).

    Article  Google Scholar 

  31. AchutaRao, K. et al. Variability of ocean heat uptake: reconciling observations and models. J. Geophys. Res. 111, C05019 (2006).

    Article  Google Scholar 

  32. Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011).

    Article  Google Scholar 

  33. Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 9, 741–866 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  34. 2015: IPRC Products Based on Argo Data (International Pacific Research Center, 2015); http://apdrc.soest.hawaii.edu/projects/argo.

  35. Hosoda, S., Ohira, T. & Nakamura, T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. Vol. 8, 47–59 (JAMSTEC (Japan Agency for Marine-Earth Science and Technology), 2008); www.jamstec.go.jp/ARGO.

  36. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  37. Ridley, D. A. et al. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett. 41, 7763–7769 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work of P.J.G. and P.J.D., from Lawrence Livermore National Laboratory, is a contribution to the US Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Climate Modeling Program under contract DE-AC52-07NA27344. C.E.F. was partially supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, grants DE-SC0004956 (as a member of the International Detection and Attribution Working Group (IDAG)) and DEFG02-94ER61937 and by the National Science Foundation through the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507. G.C.J. is supported by NOAA Research and the NOAA Ocean Climate Observations Program. We thank K. Taylor, B. Santer and J. Gregory for their helpful suggestions concerning our analysis. We acknowledge the sources of observed data used in this study: C. M. Domingues, M. Ishii and M. Kimoto, S. Levitus and T. Boyer, S. Purkey and G. Johnson, D. Roemmich and J. Gilson, S. Hosoda, T. Ohira and T. Nakamura and the International Pacific Research Center. We thank the climate modelling groups (listed in Supplementary Table 1) for producing and making available their model output.

Author information

Authors and Affiliations

Authors

Contributions

P.J.G., R.J.S. and C.E.F. conceived the experimental design, P.J.G. and P.J.D. performed the analysis, G.C.J. provided data and expertise on deep ocean measurements, and P.J.G. wrote the paper with substantial input from all authors.

Corresponding author

Correspondence to Peter J. Gleckler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 902 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleckler, P., Durack, P., Stouffer, R. et al. Industrial-era global ocean heat uptake doubles in recent decades. Nature Clim Change 6, 394–398 (2016). https://doi.org/10.1038/nclimate2915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2915

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene