Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Economics of tipping the climate dominoes

Abstract

Greenhouse gas emissions can trigger irreversible regime shifts in the climate system, known as tipping points. Multiple tipping points affect each other’s probability of occurrence, potentially causing a ‘domino effect’. We analyse climate policy in the presence of a potential domino effect. We incorporate three different tipping points occurring at unknown thresholds into an integrated climate–economy model. The optimal emission policy considers all possible thresholds and the resulting interactions between tipping points, economic activity, and policy responses into the indefinite future. We quantify the cost of delaying optimal emission controls in the presence of uncertain tipping points and also the benefit of detecting when individual tipping points have been triggered. We show that the presence of these tipping points nearly doubles today’s optimal carbon tax and reduces peak warming along the optimal path by approximately 1 °C. The presence of these tipping points increases the cost of delaying optimal policy until mid-century by nearly 150%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified schematic of our DICE-based integrated assessment model.
Figure 2: Schematic illustrating the recursive decision problem underlying the optimal policy choice.
Figure 3: The optimal carbon tax in the years 2015 and 2050, assuming no tipping point has yet occurred.
Figure 4: Optimal emissions and temperature with a single potential tipping point and with all three potential tipping points.
Figure 5: The probability of eventually triggering a next tipping point, conditional on having just triggered a first tipping point (out of three potential ones) in a given year.
Figure 6: The welfare and policy consequences of delaying optimal climate policy.

Similar content being viewed by others

References

  1. Hansen, J. et al. Target atmospheric CO2: where should humanity aim? Open Atmos. Sci. J. 2, 217–231 (2008).

    Article  CAS  Google Scholar 

  2. Ramanathan, V. & Feng, Y. On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc. Natl Acad. Sci. USA 105, 14245–14250 (2008).

    Article  CAS  Google Scholar 

  3. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  4. National Research Council Abrupt Impacts of Climate Change: Anticipating Surprises (National Academies Press, 2013).

  5. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  6. Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    Article  CAS  Google Scholar 

  7. Levermann, A. et al. Potential climatic transitions with profound impact on Europe. Climatic Change 110, 845–878 (2012).

    Article  Google Scholar 

  8. Lenton, T. M. & Ciscar, J.-C. Integrating tipping points into climate impact assessments. Climatic Change 117, 585–597 (2013).

    Article  Google Scholar 

  9. Kopits, E., Marten, A. & Wolverton, A. Incorporating ‘catastrophic’ climate change into policy analysis. Clim. Policy 14, 637–664 (2014).

    Article  Google Scholar 

  10. Rocha, J. C., Peterson, G. D. & Biggs, R. Regime shifts in the Anthropocene: drivers, risks, and resilience. PLoS ONE 10, e0134639 (2015).

    Article  Google Scholar 

  11. Gjerde, J., Grepperud, S. & Kverndokk, S. Optimal climate policy under the possibility of a catastrophe. Resour. Energy Econ. 21, 289–317 (1999).

    Article  Google Scholar 

  12. Keller, K., Bolker, B. M. & Bradford, D. F. Uncertain climate thresholds and optimal economic growth. J. Environ. Econ. Manag. 48, 723–741 (2004).

    Article  Google Scholar 

  13. van der Ploeg, F. & de Zeeuw, A. Climate Policy and Catastrophic Change: Be Prepared and Avert Risk OxCarre Working Paper 118 (Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford, 2013).

  14. Lontzek, T. S., Cai, Y., Judd, K. L. & Lenton, T. M. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nature Clim. Change 5, 441–444 (2015).

    Article  Google Scholar 

  15. Lemoine, D. & Traeger, C. Watch your step: optimal policy in a tipping climate. Am. Econ. J. Econ. Policy 6, 137–166 (2014).

    Article  Google Scholar 

  16. Traeger, C. A 4-stated DICE: Quantitatively addressing uncertainty effects in climate change. Environ. Resour. Econ. 59, 1–37 (2014).

    Article  Google Scholar 

  17. Nordhaus, W. D. An optimal transition path for controlling greenhouse gases. Science 258, 1315–1319 (1992).

    Article  CAS  Google Scholar 

  18. Nordhaus, W. D. A Question of Balance: Weighing the Options on Global Warming Policies (Yale Univ. Press, 2008).

    Google Scholar 

  19. Zimov, S. A., Schuur, E. A. G. & Chapin, F. S. Permafrost and the global carbon budget. Science 312, 1612–1613 (2006).

    Article  CAS  Google Scholar 

  20. Hall, D. C. & Behl, R. J. Integrating economic analysis and the science of climate instability. Ecol. Econ. 57, 442–465 (2006).

    Article  Google Scholar 

  21. Archer, D. Methane hydrate stability and anthropogenic climate change. Biogeosciences 4, 521–544 (2007).

    Article  CAS  Google Scholar 

  22. Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63, 165–180 (2011).

    Article  CAS  Google Scholar 

  23. Le Qur, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Article  Google Scholar 

  24. Eglin, T. et al. Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B 62, 700–718 (2010).

    Article  Google Scholar 

  25. Huntingford, C. et al. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Phil. Trans. R. Soc. B 363, 1857–1864 (2008).

    Article  Google Scholar 

  26. Oppenheimer, M. Global warming and the stability of the West Antarctic Ice Sheet. Nature 393, 325–332 (1998).

    Article  CAS  Google Scholar 

  27. Oppenheimer, M. & Alley, R. B. The West Antarctic Ice Sheet and long term climate policy. Climatic Change 64, 1–10 (2004).

    Article  Google Scholar 

  28. Vaughan, D. G. West Antarctic Ice Sheet collapse—the fall and rise of a paradigm. Climatic Change 91, 65–79 (2008).

    Article  Google Scholar 

  29. Notz, D. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss. Proc. Natl Acad. Sci. USA 106, 20590–20595 (2009).

    Article  CAS  Google Scholar 

  30. Stern, N. The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, 2007).

    Book  Google Scholar 

  31. Ackerman, F., Stanton, E. A. & Bueno, R. Fat tails, exponents, extreme uncertainty: simulating catastrophe in DICE. Ecol. Econ. 69, 1657–1665 (2010).

    Article  Google Scholar 

  32. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    Article  CAS  Google Scholar 

  33. Masui, T. et al. An emission pathway for stabilization at 6 W m2 radiative forcing. Climatic Change 109, 59–76 (2011).

    Article  CAS  Google Scholar 

  34. Schneider, M. C., Winkler, R. & Traeger, C. P. Trading off generations: equity, discounting, and climate change. Eur. Econ. Rev. 56, 1621–1644 (2012).

    Article  Google Scholar 

  35. Crost, B. & Traeger, C. P. Optimal CO2 mitigation under damage risk valuation. Nature Clim. Change 4, 631–636 (2014).

    Article  CAS  Google Scholar 

  36. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  Google Scholar 

  37. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    Article  CAS  Google Scholar 

  38. Kelly, D. L. & Kolstad, C. D. Bayesian learning, growth, and pollution. J. Econ. Dynam. Control 23, 491–518 (1999).

    Article  Google Scholar 

  39. Lorenz, A., Schmidt, M. G. W., Kriegler, E. & Held, H. Anticipating climate threshold damages. Environ. Model. Assess. 17, 163–175 (2012).

    Article  Google Scholar 

  40. Kunreuther, H. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 151–205 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  41. Smith, J. B. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “reasons for concern”. Proc. Natl Acad. Sci. USA 106, 4133–4137 (2009).

    Article  CAS  Google Scholar 

  42. Judd, K. L. Projection methods for solving aggregate growth models. J. Econ. Theory 58, 410–452 (1992).

    Article  Google Scholar 

  43. Judd, K. L. Numerical Methods in Economics (MIT Press, 1998).

    Google Scholar 

  44. Miranda, M. J. & Fackler, P. L. Applied Computational Economics and Finance (MIT Press, 2002).

    Google Scholar 

Download references

Acknowledgements

C.P.T. gratefully acknowledges support by the National Science Foundation through the Network for Sustainable Climate Risk Management GEO-1240507.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed in equal parts to the conceptual and numerical design of the study, as well as to the interpretation and presentation of the results. D.L. coded the novel tipping point interaction part of the model.

Corresponding author

Correspondence to Christian P. Traeger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1077 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemoine, D., Traeger, C. Economics of tipping the climate dominoes. Nature Clim Change 6, 514–519 (2016). https://doi.org/10.1038/nclimate2902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing