Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Climate and topography explain range sizes of terrestrial vertebrates

Abstract

Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity1, and is crucial for predicting shifts in species ranges in response to climate change2,3,4. Current climate (for example, climate variability and climate extremes)5,6, long-term climate change4, evolutionary age2, topographic heterogeneity, land area3,7 and species traits such as physiological thermal limits8, dispersal ability9, annual fecundity and body size3,10 have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Boxplots of range sizes for the terrestrial vertebrates in fine resolution.
Figure 2: Scatter plots between log-transformed range size and four predictors for each taxon in fine resolution.

Similar content being viewed by others

References

  1. Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    Article  CAS  Google Scholar 

  2. Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).

    Article  Google Scholar 

  3. Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).

    Article  Google Scholar 

  4. Sandel, B. et al. The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    Article  CAS  Google Scholar 

  5. Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  6. Pither, J. Climate tolerance and interspecific variation in geographic range size. Proc. R. Soc. Lond. B 270, 475–481 (2003).

    Article  Google Scholar 

  7. Hawkins, B. A. & Felizola Diniz-Filho, J. A. Beyond Rapoport’s rule: evaluating range size patterns of New World birds in a two-dimensional framework. Glob. Ecol. Biogeograph. 15, 461–469 (2006).

    Article  Google Scholar 

  8. Calosi, P., Bilton, D. T., Spicer, J. I., Votier, S. C. & Atfield, A. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).

    Article  Google Scholar 

  9. Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. The relationship between dispersal ability and geographic range size. Ecol. Lett. 10, 745–758 (2007).

    Article  Google Scholar 

  10. Laube, I. et al. Towards a more mechanistic understanding of traits and range sizes. Glob. Ecol. Biogeograph. 22, 233–241 (2013).

    Article  Google Scholar 

  11. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    Article  Google Scholar 

  12. Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013).

    Article  Google Scholar 

  13. Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. & Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proc. R. Soc. B 281, 20141097 (2014).

    Article  Google Scholar 

  14. Burnham, K. P. & Anderson, D. R. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (Springer, 2002).

    Google Scholar 

  15. Morin, X. & Lechowicz, M. J. Niche breadth and range area in North American trees. Ecography 36, 300–312 (2013).

    Article  Google Scholar 

  16. Bozinovic, F., Calosi, P. & Spicer, J. I. Physiological correlates of geographic range in animals. Annu. Rev. Ecol. Evol. Syst. 42, 155–179 (2011).

    Article  Google Scholar 

  17. Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).

    Article  Google Scholar 

  18. Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article  CAS  Google Scholar 

  19. Kronfeld-Schor, N. & Dayan, T. Thermal ecology, environments, communities, and global change: energy intake and expenditure in endotherms. Annu. Rev. Ecol. Evol. Syst. 44, 461–480 (2013).

    Article  Google Scholar 

  20. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nature Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  21. Whitton, F. J. S., Purvis, A. & Orme, C. D. L. Olalla-Tarraga MA. Understanding global patterns in amphibian geographic range size: does Rapoport rule? Glob. Ecol. Biogeogr. 21, 179–190 (2012).

    Article  Google Scholar 

  22. Bonebrake, T. C. & Mastrandrea, M. D. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. Proc. Natl Acad. Sci. USA 107, 12581–12586 (2010).

    Article  CAS  Google Scholar 

  23. Morueta-Holme, N. et al. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol. Lett. 16, 1446–1454 (2013).

    Article  Google Scholar 

  24. Luiz, O. J. et al. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proc. Natl Acad. Sci. USA 110, 16498–16502 (2013).

    Article  CAS  Google Scholar 

  25. Bird Species Distribution Maps of the World Version 2.0 (BirdLife International and NatureServe, 2012).

  26. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933–938 (2001).

    Article  Google Scholar 

  27. Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).

    Article  CAS  Google Scholar 

  28. Norman, G. R. & Streiner, D. L. Biostatistics: The Bare Essentials (B. C. Decker, 2007).

    Google Scholar 

  29. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  30. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article  CAS  Google Scholar 

  31. Garrard, G. E., McCarthy, M. A., Vesk, P. A., Radford, J. Q. & Bennett, A. F. A predictive model of avian natal dispersal distance provides prior information for investigating response to landscape change. J. Anim. Ecol. 81, 14–23 (2012).

    Article  Google Scholar 

  32. Liu, X. et al. Congener diversity, topographic heterogeneity and human-assisted dispersal predict spread rates of alien herpetofauna at a global scale. Ecol. Lett. 17, 821–829 (2014).

    Article  Google Scholar 

  33. Baselga, A., Lobo, J. M., Svenning, J. C. & Araujo, M. B. Global patterns in the shape of species geographical ranges reveal range determinants. J. Biogeogr. 39, 760–771 (2012).

    Article  Google Scholar 

  34. Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    Article  CAS  Google Scholar 

  35. Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).

    Article  Google Scholar 

  36. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article  CAS  Google Scholar 

  37. Freckleton, R. P. On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J. Anim. Ecol. 71, 542–545 (2002).

    Article  Google Scholar 

  38. Jetz, W. & Rahbek, C. Geometric constraints explain much of the species richness pattern in African birds. Proc. Natl Acad. Sci. USA 98, 5661–5666 (2001).

    Article  CAS  Google Scholar 

  39. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  40. Orme, D. et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R R package version 0.5.2 (R Foundation for Statistical Computing, 2013).

  41. Bartoń, K. MuMIn: Multi-Model Inference R package version 1.10.0 (R Foundation for Statistical Computing, 2014).

Download references

Acknowledgements

We thank S. Meiri and F. Xu for providing data on life-history traits of some species and K. Bartoń for the suggestion about multimodel inference with package MuMIn in R. Funding was provided by the National Science Foundation of China (31530088 and 31200416) and the Ministry of Science and Technology of China (2013FY110300).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. and X.Li designed the study; X.Li, D.B., Z.L., X.Liu and S.Y. collected the data; Y.L., B.S. and X.Li developed the method for controlling for sampling effect in climate extremes; X.Li, Y.L. and B.S. analysed the data; Y.L., X.Li and B.S. wrote the manuscript.

Corresponding author

Correspondence to Yiming Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, X., Sandel, B. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nature Clim Change 6, 498–502 (2016). https://doi.org/10.1038/nclimate2895

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2895

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing