Abstract
Climate sensitivity to doubled CO2 is a widely used metric for the large-scale response to external forcing. Climate models predict a wide range for two commonly used definitions: the transient climate response (TCR: the warming after 70 years of CO2 concentrations that rise at 1% per year), and the equilibrium climate sensitivity (ECS: the equilibrium temperature change following a doubling of CO2 concentrations). Many observational data sets have been used to constrain these values, including temperature trends over the recent past1,2,3,4,5,6, inferences from palaeoclimate7,8 and process-based constraints from the modern satellite era9,10. However, as the IPCC recently reported11, different classes of observational constraints produce somewhat incongruent ranges. Here we show that climate sensitivity estimates derived from recent observations must account for the efficacy of each forcing active during the historical period. When we use single-forcing experiments to estimate these efficacies and calculate climate sensitivity from the observed twentieth-century warming, our estimates of both TCR and ECS are revised upwards compared to previous studies, improving the consistency with independent constraints.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components
Scientific Data Open Access 27 June 2023
-
How accurately can the climate sensitivity to $$\hbox {CO}_{2}$$ be estimated from historical climate change?
Climate Dynamics Open Access 10 October 2019
-
A refined model for the Earth’s global energy balance
Climate Dynamics Open Access 28 May 2019
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Change history
10 March 2016
In the version of this Letter originally published online, there was an error in the definition of in equation (2). The historical instantaneous radiative forcing time series was also updated to reflect land use change, which was inadvertently excluded from the forcing originally calculated from ref. 22. This has resulted in minor changes to data in Figs 1 and 2, as well as in the corresponding main text and Supplementary Information. In addition, the end of the paragraph beginning' Scaling ΔF for each of the single-forcing runs...' should have read '...the CO2-only runs' (not 'GHG-only runs'). The conclusions of the Letter are not affected by these changes. All errors have been corrected in all versions of the Letter. The authors thank Nic Lewis for his careful reading of the original manuscript that resulted in the identification of these errors.
References
Forest, C. E., Stone, P. H., Sokolov, A. P., Allen, M. R. & Webster, M. D. Quantifying uncertainties in climate system properties with the use of recent climate observations. Science 295, 113–117 (2002).
Forest, C. E., Stone, P. H. & Sokolov, A. P. Estimated PDFs of climate system properties including natural and anthropogenic forcings. Geophys. Res. Lett. 33, L01705 (2006).
Lewis, N. & Curry, J. A. The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim. Dynam. 45, 1009–1023 (2014).
Otto, A. et al. Energy budget constraints on climate response. Nature Geosci. 6, 415–416 (2013).
Ring, M. J., Lindner, D., Cross, E. F. & Schlesinger, M. E. Causes of the global warming observed since the 19th century. Atmos. Clim. Sci. 02, 401–415 (2012).
Aldrin, M. et al. Bayesian estimation of climate sensitivity based on a simple climate model fitted to observations of hemispheric temperatures and global ocean heat content. Environmetrics 23, 253–271 (2012).
PALAEOSENS Project Members Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012).
Hargreaves, J. C., Annan, J. D., Yoshimori, M. & Abe-Ouchi, A. Can the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett. 39, L24702 (2012).
Sherwood, S. C., Bony, S. & Dufresne, J. Spread in model climate sensitivity traced to atmospheric convective mixing. Nature 505, 37–42 (2014).
Fasullo, J. T. & Trenberth, K. E. A less cloudy future: the role of subtropical subsidence in climate sensitivity. Science 338, 792–794 (2012).
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).
Hansen, J. et al. in Climate Processes and Climate Sensitivity Vol. 29 (eds Hansen, J. E. & Takahashi, T.) 130–163 (American Geophysical Union, 1984).
Hansen, J. E. et al. Efficacy of climate forcings. J. Geophys. Res. 110, D18104 (2005).
Stuber, N., Ponater, M. & Sausen, R. Why radiative forcing might fail as a predictor of climate change. Clim. Dynam. 24, 497–510 (2005).
Köhler, P. et al. What caused Earth’s temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010).
Schmittner, A. et al. Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum. Science 334, 1385–1388 (2011).
Rose, B. E., Armour, K. C., Battisti, D. S., Feldl, N. & Koll, D. D. The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett. 41, 1071–1078 (2014).
Winton, M., Takahashi, K. & Held, I. M. Importance of ocean heat uptake efficacy to transient climate change. J. Clim. 23, 2333–2344 (2010).
Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional feedbacks. J. Clim. 26, 4518–4534 (2013).
Kummer, J. R. & Dessler, A. E. The impact of forcing efficacy on the equilibrium climate sensitivity. Geophys. Res. Lett. 41, 3565–3568 (2014).
Shindell, D. T. Inhomogeneous forcing and transient climate sensitivity. Nature Clim. Change 4, 274–277 (2014).
Miller, R. L. et al. CMIP5 historical simulations (1850–2012) with GISS ModelE2. J. Adv. Model. Earth Syst. 6, 441–477 (2014).
Nazarenko, L. et al. Future climate change under rcp emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst. 7, 244–267 (2015).
Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014).
Gregory, J. M. et al. A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett. 31, L03205 (2004).
Hansen, J. E. et al. Forcings and chaos in interannual to decadal climate change. J. Geophys. Res. 102, 25679–25720 (1997).
Gregory, J. M., Andrews, T. & Good, P. The inconstancy of the transient climate response parameter under increasing CO2 . Phil. Trans. R. Soc. A 373, 20140417 (2015).
Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nature Geosci. 2, 294–300 (2009).
Tomassini, L., Reichert, P., Knutti, R., Stocker, T. F. & Borsuk, M. E. Robust bayesian uncertainty analysis of climate system properties using Markov Chain Monte Carlo methods. J. Clim. 20, 1239–1254 (2007).
Merlis, T. M., Held, I. M., Stenchikov, G. L., Zeng, F. & Horowitz, L. W. Constraining transient climate sensitivity using coupled climate model simulations of volcanic eruptions. J. Clim. 27, 7781–7795 (2014).
Acknowledgements
Climate modelling at GISS is supported by the NASA Modeling, Analysis and Prediction Program and resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center. The authors thank D. McNeall and E. Hawkins for advice on figures, and E. Hawkins, J. Gregory, M. Webb, K. Taylor and R. Pincus for helpful discussions.
Author information
Authors and Affiliations
Contributions
K.M. and G.A.S. designed the research and wrote the paper, with input from R.L.M. R.L.M. and L.S.N. provided the forcing data. L.S.N. ran the climate model experiments. All authors contributed to the interpretation of the results.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Marvel, K., Schmidt, G., Miller, R. et al. Implications for climate sensitivity from the response to individual forcings. Nature Clim Change 6, 386–389 (2016). https://doi.org/10.1038/nclimate2888
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nclimate2888
This article is cited by
-
Ensemble of CMIP6 derived reference and potential evapotranspiration with radiative and advective components
Scientific Data (2023)
-
On the invalidity of the ordinary least squares estimate of the equilibrium climate sensitivity
Theoretical and Applied Climatology (2021)
-
Short-lived climate forcers have long-term climate impacts via the carbon–climate feedback
Nature Climate Change (2020)
-
Improved methods for estimating equilibrium climate sensitivity from transient warming simulations
Climate Dynamics (2020)
-
How accurately can the climate sensitivity to $$\hbox {CO}_{2}$$ be estimated from historical climate change?
Climate Dynamics (2020)