Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enhanced weathering strategies for stabilizing climate and averting ocean acidification

Abstract

Chemical breakdown of rocks, weathering, is an important but very slow part of the carbon cycle that ultimately leads to CO2 being locked up in carbonates on the ocean floor. Artificial acceleration of this carbon sink via distribution of pulverized silicate rocks across terrestrial landscapes may help offset anthropogenic CO2 emissions1,2,3,4,5. We show that idealized enhanced weathering scenarios over less than a third of tropical land could cause significant drawdown of atmospheric CO2 and ameliorate ocean acidification by 2100. Global carbon cycle modelling6,7,8 driven by ensemble Representative Concentration Pathway (RCP) projections of twenty-first-century climate change (RCP8.5, business-as-usual; RCP4.5, medium-level mitigation)9,10 indicates that enhanced weathering could lower atmospheric CO2 by 30–300 ppm by 2100, depending mainly on silicate rock application rate (1 kg or 5 kg m−2 yr−1) and composition. At the higher application rate, end-of-century ocean acidification is reversed under RCP4.5 and reduced by about two-thirds under RCP8.5. Additionally, surface ocean aragonite saturation state, a key control on coral calcification rates, is maintained above 3.5 throughout the low latitudes, thereby helping maintain the viability of tropical coral reef ecosystems11,12,13,14. However, we highlight major issues of cost, social acceptability, and potential unanticipated consequences that will limit utilization and emphasize the need for urgent efforts to phase down fossil fuel emissions15.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced weathering from pulverized silicate rock additions to the tropics increases CO2 consumption.
Figure 2: Enhanced weathering lowers atmospheric CO2 with projected twenty-first-century climate change.
Figure 3: Enhanced weathering ameliorates future ocean acidification caused by projected twenty-first-century increases in atmospheric CO2.
Figure 4: Enhanced weathering raises the aragonite saturation state of the ocean by 2100.

Similar content being viewed by others

References

  1. Seifritz, W. CO2 disposal by means of silicates. Nature 345, 486 (1990).

    Article  Google Scholar 

  2. Schuiling, R. D. & Krijgsman, P. Enhanced weathering: An effective and cheap tool to sequester CO2 . Climatic Change 74, 349–354 (2006).

    Article  CAS  Google Scholar 

  3. Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 20228–20233 (2010).

    Article  Google Scholar 

  4. Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Article  Google Scholar 

  5. Moosdorf, N., Renforth, P. & Hartmann, J. Carbon dioxide efficiency of terrestrial enhanced weathering. Environ. Sci. Technol. 48, 4809–4816 (2014).

    Article  CAS  Google Scholar 

  6. Taylor, L. L., Banwart, S. A., Leake, J. R. & Beerling, D. J. Modeling the evolutionary rise of ectomycorrhiza on sub-surface weathering environments and the geochemical carbon cycle. Am. J. Sci. 311, 369–403 (2011).

    Article  CAS  Google Scholar 

  7. Taylor, L. L., Banwart, S. A., Valdes, P. J., Leake, J. R. & Beerling, D. J. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: A global-scale process-based approach. Phil. Trans. R. Soc. B 367, 565–582 (2012).

    Article  CAS  Google Scholar 

  8. Cao, L. et al. The role of ocean transport in the uptake of anthropogenic CO2 . Biogeosciences 6, 375–390 (2009).

    Article  CAS  Google Scholar 

  9. Hempel, S., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. A trend-preserving bias correction—the ISI-MIP approach. Earth Syst. Dynam. 4, 219–236 (2013).

    Article  Google Scholar 

  10. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    Article  Google Scholar 

  11. Caldeira, K. & Wickett, M. E. Anthropogenic carbon and ocean pH. Nature 425, 365 (2003).

    Article  CAS  Google Scholar 

  12. Ciais, P. et al. in Climate change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6, 465–570 (Cambridge Univ. Press, 2013).

    Google Scholar 

  13. Turley, C. et al. The societal challenge of ocean acidification. Mar. Pollut. Bull. 60, 787–792 (2010).

    Article  CAS  Google Scholar 

  14. Ricke, K. L., Orr, J. C., Schneider, K. & Caldeira, K. Risks to coral reefs from ocean carbonate chemistry changes in recent earth system model projections. Environ. Res. Lett. 8, 034003 (2013).

    Article  Google Scholar 

  15. Caldeira, K., Bala, G. & Cao, L. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41, 231–256 (2013).

    Article  CAS  Google Scholar 

  16. United Nations Framework Convention on Climate Change (1992); http://www.unfccc.int.

  17. Hansen, J. et al. Assessing “dangerous climate change”: Required reduction of carbon emissions to protect young people, future generations and nature. PLoS ONE 8, e81648 (2013).

    Article  Google Scholar 

  18. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (Committee on Geoengineering Climate: Technical Evaluation and Discussion of Impacts; Board on Atmospheric Sciences and Climate; Ocean Studies Board; Division on Earth and Life Studies; National Research Council, National Academy of Sciences, 2015).

  19. Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S. & Köhler, P. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Glob. Planet. Change 69, 185–194 (2009).

    Article  Google Scholar 

  20. Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Article  CAS  Google Scholar 

  21. Hilf, H. H. Die Düngung mit Basaltabfällen. Forstarchiv 14, 93–101 (1938).

    CAS  Google Scholar 

  22. de Villiers, O. D. Soil rejuvenation with crushed basalt in Mauritius Part I: Consistent results of world-wide interests. Int. Sugar J. 63, 363–364 (1961).

    Google Scholar 

  23. Anda, M., Shamshuddin, J. & Fauziah, C. I. Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions. Soil Tillage Res. 132, 1–11 (2013).

    Article  Google Scholar 

  24. Gillman, G. P., Burkett, D. C. & Coventry, R. J. Amending highly weathered soils with finely ground basalt rock. Appl. Geochem. 17, 987–1001 (2002).

    Article  CAS  Google Scholar 

  25. Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2 °C. Nature Commun. 6, 7958 (2015).

    Article  CAS  Google Scholar 

  26. Köhler, P., Abrams, J. F., Völker, C., Hauck, J. & Wolf-Gladrow, D. A. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environ. Res. Lett. 8, 014009 (2013).

    Article  Google Scholar 

  27. Hangx, S. J. T. & Spiers, C. J. Coastal spreading of olivine to control atmospheric CO2 concentrations: A critical analysis of viability. Int. J. Greenhouse Gas Control 3, 757–767 (2009).

    Article  CAS  Google Scholar 

  28. Geoengineering the Climate: Science, Governance and Uncertainty Report No. RS1636 (The Royal Society, 2009).

  29. Bernard, C. Y., Dürr, H. H., Heinze, C., Segschneider, J. & Maier-Reimer, E. Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean—a model study. Biogeosciences 8, 551–564 (2011).

    Article  CAS  Google Scholar 

  30. Quirk, J., Andrews, M. Y., Leake, J. R., Banwart, S. A. & Beerling, D. J. Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes. Biol. Lett. 10, 1006–1011 (2014).

    Article  Google Scholar 

  31. Brantley, S. L. in Kinetics of Water-Rock Interaction (eds Brantley, S. L., Kubicki, J. D. & Art White, F.) Ch. 5, 151–210 (Springer, 2008).

    Book  Google Scholar 

  32. Woodward, F. I. & Lomas, M. R. Vegetation dynamics—simulating responses to climatic change. Biol. Rev. 79, 643–670 (2004).

    Article  CAS  Google Scholar 

  33. Bartholomé, E. & Belward, A. S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 26, 1959–1977 (2005).

    Article  Google Scholar 

  34. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 . Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    Article  CAS  Google Scholar 

  35. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  36. Hartmann, J. & Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst. 13, Q12004 (2012).

    Article  Google Scholar 

  37. Palandri, J. L. & Kharaka, Y. K. A Compilation of Rate Parameters of Water-Mineral Interaction Kinetics for Application to Geochemical Modeling Report No. 2004-1068, 1–64 (US Geological Survey, 2004).

  38. White, A. F. & Brantley, S. L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field? Chem. Geol. 202, 479–506 (2003).

    Article  CAS  Google Scholar 

  39. Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  CAS  Google Scholar 

  40. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

  41. FAO GEONETWORK (FAO, 2014).

  42. Gislason, S. R. et al. Direct evidence of the feedback between climate and weathering. Earth Planet. Sci. Lett. 277, 213–222 (2009).

    Article  CAS  Google Scholar 

  43. Beaulieu, E., Godderis, Y., Donnadieu, Y., Labat, D. & Roelandt, C. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Clim. Change 2, 346–349 (2012).

    Article  CAS  Google Scholar 

  44. Nockolds, S. R. Average chemcal compositions of some igneous rocks. Geol. Soc. Am. Bull. 65, 1007–1032 (1954).

    Article  CAS  Google Scholar 

  45. Kogel, J. E., Trivedi, N. C., Barker, J. M. & Krukowski, S. T. Industrial Minerals and Rocks—Commodities, Markets, and Uses 7th edn (Society for Mining, Metallurgy, and Exploration, 2006).

    Google Scholar 

  46. Magaritz, M. & Taylor, H. P. Oxygen and hydrogen isotope studies of serpentinization in Troodos ophiolite complex, Cyprus. Earth Planet. Sci. Lett. 23, 8–14 (1974).

    Article  CAS  Google Scholar 

  47. Price, A. R., Myerscough, R. J., Voutchkov, I. I., Marsh, R. & Cox, S. J. Multi-objective optimization of GENIE Earth system models. Phil. Trans. R. Soc. A 367, 2623–2633 (2009).

    Article  Google Scholar 

  48. Ridgwell, A. et al. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling. Biogeosciences 4, 87–104 (2007).

    Article  CAS  Google Scholar 

  49. Archer, D. et al. Atmospheric lifetime of fossil fuel carbon dioxide. Annu. Rev. Earth Planet. Sci. 37, 117–134 (2009).

    Article  CAS  Google Scholar 

  50. Eby, M. et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Clim. Past 9, 1111–1140 (2013).

    Article  Google Scholar 

  51. Goodwin, P., Williams, R. G., Ridgwell, A. & Follows, M. J. Climate sensitivity to the carbon cycle modulated by past and future changes in ocean chemistry. Nature Geosci. 2, 145–150 (2009).

    Article  CAS  Google Scholar 

  52. Annan, J. D. & Hargreaves, J. C. Efficient identification of ocean thermodynamics in a physical/biogeochemical ocean model with an iterative Importance Sampling method. Ocean Model. 32, 205–215 (2010).

    Article  Google Scholar 

  53. Doney, S. C., Lindsay, K., Fung, I. & John, J. Natural variability in a stable, 1000-yr global coupled climate—carbon cycle simulation. J. Clim. 19, 3033–3054 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Goddéris and P. Renforth for helpful comments on the manuscript, T. Elliot for earlier discussions, and gratefully acknowledge funding through an ERC Advanced grant to D.J.B. (CDREG, 32998). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (Supplementary Table 1) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Contributions

D.J.B. conceived the study with input from all co-authors. L.L.T. undertook weathering model development and simulations, J.Q. and R.M.S.T. undertook data analyses, P.A.K. and A.R. provided model set-up support and advice, M.R.L. analysed the CMIP5 climates. D.J.B. led the writing with contributions from all co-authors, especially J.H., A.R., J.Q. and L.L.T.

Corresponding author

Correspondence to David J. Beerling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, L., Quirk, J., Thorley, R. et al. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nature Clim Change 6, 402–406 (2016). https://doi.org/10.1038/nclimate2882

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing