Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A role for tropical forests in stabilizing atmospheric CO2

Tropical forests could offset much of the carbon released from the declining use of fossil fuels, helping to stabilize and then reduce atmospheric CO2 concentrations, thereby providing a bridge to a low-fossil-fuel future.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The potential role for tropical forest management in stabilizing atmospheric CO2.


  1. 1

    Jacobson, M. Z. & Delucchi, M. A. Energy Policy 39, 1154–1169 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Meinshausen, M. et al. Nature 458, 1158–1163 (2009).

    CAS  Article  Google Scholar 

  3. 3

    Pacala, S. & Socolow, R. Science 305, 968–972 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Mackey, B. et al. Nature Clim. Change 3, 552–557 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Houghton, R. A. in Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle (eds Lal, R. et al.) 59–82 (Springer, 2012).

    Book  Google Scholar 

  6. 6

    Le Quéré, C. et al. Earth Syst. Sci. Data 7, 47–85 (2015).

    Article  Google Scholar 

  7. 7

    Houghton, R. A. Carbon Manage. 4, 539–546 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Berenguer, E. et al. Global Change Biol. 20, 3713–3726 (2014).

    Article  Google Scholar 

  9. 9

    Richter, D. de B. & Houghton, R. A. Carbon Manage 2, 41–47 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Grace, J., Mitchard, E. & Gloor, E. Global Change Biol. 20, 3238–3255 (2014).

    Article  Google Scholar 

  11. 11

    Laestadius, L. et al. Unasylva 238, 47–48 (2011).

    Google Scholar 

  12. 12

    Dinerstein, E. et al. Conservation Lett. 8, 262–271 (2014).

    Article  Google Scholar 

  13. 13

    Stephenson, N. L. et al. Nature 507, 90–93 (2014).

    CAS  Article  Google Scholar 

  14. 14

    McGlade, C. & Ekins, P. Nature 517, 187–190 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Pongratz, J., Reick, C. H., Raddatz, T. & Claussen, M. Geophys. Res. Lett. 37, L08702 (2010).

    Article  Google Scholar 

  16. 16

  17. 17

    Schuur, E. A. G. et al. Nature 520, 171–179 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Gatti, L. V. et al. Nature 506, 76–80 (2014).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. A. Houghton.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Houghton, R., Byers, B. & Nassikas, A. A role for tropical forests in stabilizing atmospheric CO2. Nature Clim Change 5, 1022–1023 (2015).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing