Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation



Global environmental change has implications for the spatial and temporal distribution of water resources, but quantifying its effects remains a challenge. The impact of vegetation responses to increasing atmospheric CO2 concentrations on the hydrologic cycle is particularly poorly constrained1,2,3. Here we combine remotely sensed normalized difference vegetation index (NDVI) data and long-term water-balance evapotranspiration (ET) measurements from 190 unimpaired river basins across Australia during 1982–2010 to show that the precipitation threshold for water limitation of vegetation cover has significantly declined during the past three decades, whereas sub-humid and semi-arid basins are not only ‘greening’ but also consuming more water, leading to significant (24–28%) reductions in streamflow. In contrast, wet and arid basins show nonsignificant changes in NDVI and reductions in ET. These observations are consistent with expected effects of elevated CO2 on vegetation. They suggest that projected future decreases in precipitation4 are likely to be compounded by increased vegetation water use, further reducing streamflow in water-stressed regions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spatial patterns of vegetation greening.
Figure 2: Illustration of the breakpoint regression method.
Figure 3: Trends in water limitation threshold characteristics.
Figure 4: CO2 effects on ET, NDVI and runoff.


  1. 1

    Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242–15247 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Alkama, R., Decharme, B., Douville, H. & Ribes, A. Trends in global and basin-scale runoff over the late twentieth century: Methodological issues and sources of uncertainty. J. Clim. 24, 3000–3014 (2011).

    Article  Google Scholar 

  4. 4

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  5. 5

    Leakey, A. D. B. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 1–5 (2013).

    Article  Google Scholar 

  7. 7

    Hovenden, M. J., Newton, P. C. D. & Wills, K. E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511, 583–586 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Newingham, B. A. et al. No cumulative effect of 10 years of elevated [CO2] on perennial plant biomass components in the Mojave Desert. Glob. Change Biol. 19, 2168–2181 (2013).

    Article  Google Scholar 

  9. 9

    Bradley, K. L. & Pregitzer, K. S. Ecosystem assembly and terrestrial carbon balance under elevated CO2 . Trends Ecol. Evol. 22, 538–547 (2007).

    Article  Google Scholar 

  10. 10

    Nowak, R. S., Ellsworth, D. S. & Smith, S. D. Functional responses of plants to elevated atmospheric CO2—do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol. 162, 253–280 (2004).

    Article  Google Scholar 

  11. 11

    Morgan, J. A. et al. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2 . Oecologia 140, 11–25 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Raz-Yaseef, N., Rotenberg, E. & Yakir, D. Effects of spatial variations in soil evaporation caused by tree shading on water flux partitioning in a semi-arid pine forest. Agric. Forest Meteorol. 150, 454–462 (2010).

    Article  Google Scholar 

  13. 13

    Douville, H., Ribes, A., Decharme, B., Alkama, R. & Sheffield, J. Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nature Clim. Chang. 3, 59–62 (2013).

    Article  Google Scholar 

  14. 14

    Ukkola, A. M. & Prentice, I. C. A worldwide analysis of trends in water-balance evapotranspiration. Hydrol. Earth Syst. Sci. 17, 4177–4187 (2013).

    Article  Google Scholar 

  15. 15

    Myneni, R. B. & Williams, D. L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 49, 200–211 (1994).

    Article  Google Scholar 

  16. 16

    Lu, H., Raupach, M. R., McVicar, T. R. & Barrett, D. J. Decomposition of vegetation cover into woody and herbaceous components using AVHRR NDVI time series. Remote Sens. Environ. 86, 1–18 (2003).

    Article  Google Scholar 

  17. 17

    Hunt, E. R. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. Int. J. Remote Sens. 15, 1725–1729 (1994).

    Article  Google Scholar 

  18. 18

    De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115, 692–702 (2011).

    Article  Google Scholar 

  19. 19

    Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).

    Article  Google Scholar 

  20. 20

    Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely-sensed vegetation indices, canopy attributes, and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136–2160 (2008).

    Article  Google Scholar 

  21. 21

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    Article  Google Scholar 

  22. 22

    Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    Article  Google Scholar 

  23. 23

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article  Google Scholar 

  25. 25

    Xu, T. & Hutchinson, M. F. New developments and applications in the ANUCLIM spatial climatic and bioclimatic modelling package. Environ. Model. Softw. 40, 267–279 (2013).

    Article  Google Scholar 

  26. 26

    Kesteven, J. L. & Landsberg, J. J. Developing a National Forest Productivity Model Technical Report No. 23, 1–102 (Australian Greenhouse Office, 2004).

    Google Scholar 

  27. 27

    Gallego-Sala, A. et al. Bioclimatic envelope model of climate change impacts on blanket peatland distribution in Great Britain. Clim. Res. 45, 151–162 (2010).

    Article  Google Scholar 

  28. 28

    Raupach, M. R. Equilibrium evaporation and the convective boundary layer. Bound. Layer Meteorol. 96, 107–141 (2000).

    Article  Google Scholar 

  29. 29

    Raupach, M. R. Combination theory and equilibrium evaporation. Q. J. R. Meteorol. Soc. 127, 1149–1181 (2001).

    Article  Google Scholar 

  30. 30

    Guerschman, J. P. et al. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydrol. 369, 107–119 (2009).

    Article  Google Scholar 

  31. 31

    Zhang, L. et al. A rational function approach for estimating mean annual evapotranspiration. Wat. Resour. Res. 40, W02502 (2004).

    Google Scholar 

  32. 32

    Zhang, Y. et al. Collation of Australian Modeller’s Streamflow Dataset for 780 Unregulated Australian Catchments 1–115 (CSIRO Water for a Healthy Country Flagship Report, 2013).

    Google Scholar 

  33. 33

    Raupach, M. R. et al. Australian Water Availability Project (AWAP): CSIRO Marine and Atmospheric Research Component: Final Report for Phase 3 Technical Report No. 013 (CAWCR, 2009).

    Google Scholar 

  34. 34

    UNEP (United Nations Environment Programme) World Atlas of Desertification 182 (Edward Arnold, 1997).

    Google Scholar 

  35. 35

    Lymburner, L. et al. The National Dynamic Land Cover Dataset 1–95 (Geoscience Australia, 2011).

    Google Scholar 

  36. 36

    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Zhang, Y. et al. Decadal trends in evaporation from global energy and water balances. J. Hydrometeorol. 13, 379–391 (2012).

    Article  Google Scholar 

  38. 38

    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    Article  Google Scholar 

  39. 39

    Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).

    Article  Google Scholar 

  40. 40

    Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).

    CAS  Article  Google Scholar 

Download references


The authors are very grateful to M. Hutchinson (Australian National University) and colleagues for providing the climate data used in this study. We would also like to thank R. Donohue (CSIRO Land and Water) for useful discussions. A.M.U. has been supported by an international Macquarie University Research Excellence scholarship and a CSIRO Water for a Healthy Country Flagship top-up scholarship. T.F.K. acknowledges support from a Macquarie University Research Fellowship. This paper is a contribution to the AXA Chair Programme in Biosphere and Climate Impacts, and the Imperial College Initiative on Grand Challenges in Ecosystems and the Environment.

Author information




I.C.P., A.M.U. and T.F.K. designed the research and methodology. A.M.U. conducted all statistical and graphical analyses. R.B.M. and N.R.V. provided the key data sets. A.M.U. and I.C.P. wrote the first draft; all authors commented on the final manuscript and assisted with data interpretation.

Corresponding author

Correspondence to Anna M. Ukkola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ukkola, A., Prentice, I., Keenan, T. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Clim Change 6, 75–78 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing