Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra

Abstract

Old soil carbon (C) respired to the atmosphere as a result of permafrost thaw has the potential to become a large positive feedback to climate change. As permafrost thaws, quantifying old soil contributions to ecosystem respiration (Reco) and understanding how these contributions change with warming is necessary to estimate the size of this positive feedback. We used naturally occurring C isotopes (δ13C and Δ14C) to partition Reco into plant, young soil and old soil sources in a subarctic air and soil warming experiment over three years. We found that old soil contributions to Reco increased with soil temperature and Reco flux. However, the increase in the soil warming treatment was smaller than expected because experimentally warming the soils increased plant contributions to Reco by 30%. On the basis of these data, an increase in mean annual temperature from −5 to 0 °C will increase old soil C losses from moist acidic tundra by 35–55 g C m−2 during the growing season. The largest losses will probably occur where the plant response to warming is minimal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RecoΔ14C decreased as ecosystem respiration fluxes increased.
Figure 2: Relationships with soil temperature.
Figure 3: Old soil contribution to Reco increased with increasing respiration flux.
Figure 4: Estimated growing season old C losses from the experimental treatments in 2010 and 2011.

Similar content being viewed by others

References

  1. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Article  Google Scholar 

  2. Hicks Pries, C. E., Schuur, E. A. G. & Crummer, K. G. Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw. Ecosystems 15, 162–173 (2012).

    Article  CAS  Google Scholar 

  3. Czimczik, C. & Welker, J. Radiocarbon content of CO2 respired from high Arctic tundra in northwest Greenland. Arct. Antarct. Alp. Res. 42, 342–350 (2010).

    Article  Google Scholar 

  4. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  5. Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models. J. Clim. 26, 1877–1900 (2013).

    Article  Google Scholar 

  6. Burke, E. J., Jones, C. D. & Koven, C. D. Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. J. Clim. 26, 4897–4909 (2013).

    Article  Google Scholar 

  7. Osterkamp, T. E. Characteristics of the recent warming of permafrost in Alaska. J. Geophys. Res. 112, F02S02 (2007).

    Article  Google Scholar 

  8. Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nature Clim. Change 3, 890–894 (2013).

    Article  CAS  Google Scholar 

  9. Brutsaert, W. & Hiyama, T. The determination of permafrost thawing trends from long-term streamflow measurements with an application in eastern Siberia. J. Geophys. Res. 117, 1984–2012 (2012).

    Article  Google Scholar 

  10. Kuhry, P. et al. Characterisation of the permafrost carbon pool. Permafrost Periglac. Process. 24, 146–155 (2013).

    Article  Google Scholar 

  11. Raich, J. W. & Schlesinger, W. H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44, 81–99 (1992).

    Article  Google Scholar 

  12. Oberbauer, S. F. et al. Tundra CO2 fluxes in response to experimental warming across latitudinal and moisture gradients. Ecol. Monogr. 77, 221–238 (2007).

    Article  Google Scholar 

  13. Hobbie, S. E. & Chapin, F. S. III The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79, 1526–1544 (1998).

    Google Scholar 

  14. Dorrepaal, E. et al. Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460, 616–619 (2009).

    Article  CAS  Google Scholar 

  15. Natali, S. M., Schuur, E. A., Webb, E. E., Hicks Pries, C. E. & Crummer, K. G. Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95, 602–608 (2014).

    Article  Google Scholar 

  16. Sharp, E. D., Sullivan, P. F., Steltzer, H., Csank, A. Z. & Welker, J. M. Complex carbon cycle responses to multi-level warming and supplemental summer rain in the high Arctic. Glob. Change Biol. 19, 1780–1792 (2013).

    Article  Google Scholar 

  17. Lambers, H. III et al. Plant Physiological Ecology (Springer, 2008).

    Book  Google Scholar 

  18. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  CAS  Google Scholar 

  19. Dioumaeva, I. et al. Decomposition of peat from upland boreal forest: Temperature dependence and sources of respired carbon. J. Geophys. Res. 107, 8222 (2002).

    Article  Google Scholar 

  20. Hicks Pries, C. E., Schuur, E. A. G. & Crummer, K. G. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using δ13C and Δ14C. Glob. Change Biol. 19, 649–661 (2013).

    Article  Google Scholar 

  21. Schirrmeister, L. et al. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. J. Geophys. Res. 116, 2005–2012 (2011).

    Article  Google Scholar 

  22. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article  CAS  Google Scholar 

  23. Ehleringer, J. R., Buchmann, N. & Flanagan, L. B. Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl. 10, 412–422 (2000).

    Article  Google Scholar 

  24. Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10, 399–411 (2000).

    Article  Google Scholar 

  25. Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269 (2003).

    Article  Google Scholar 

  26. Bowling, D. R., McDowell, N. G., Bond, B. J., Law, B. E. & Ehleringer, J. R. 13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131, 113–124 (2002).

    Article  Google Scholar 

  27. Natali, S. M. et al. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob. Change Biol. 17, 1394–1407 (2011).

    Article  Google Scholar 

  28. Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nature Clim. Change 4, 51–55 (2014).

    Article  CAS  Google Scholar 

  29. Nowinski, N. S., Taneva, L., Trumbore, S. E. & Welker, J. M. Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment. Oecologia 163, 785–792 (2010).

    Article  Google Scholar 

  30. Hardie, S. M. L., Garnett, M. H., Fallick, A. E., Ostle, N. J. & Rowland, A. P. Bomb-14C analysis of ecosystem respiration reveals that peatland vegetation facilitates release of old carbon. Geoderma 153, 393–401 (2009).

    Article  CAS  Google Scholar 

  31. Hicks Pries, C. E., Schuur, E. A. G., Vogel, J. G. & Natali, S. M. Moisture drives surface decomposition in thawing tundra. J. Geophys. Res. 118, 1133–1143 (2013).

    Article  Google Scholar 

  32. Natali, S. M., Schuur, E. A. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).

    Google Scholar 

  33. Amthor, J. S. The McCree–de Wit–Penning de Vries–Thornley respiration paradigms: 30 years later. Ann. Bot. 86, 1–20 (2000).

    Article  CAS  Google Scholar 

  34. Shaver, G. R. et al. Biomass and CO2 flux in wet sedge tundras: Responses to nutrients, temperature, and light. Ecol. Monogr. 68, 75–97 (1998).

    Google Scholar 

  35. Rustad, L. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    Article  CAS  Google Scholar 

  36. Keuper, F. et al. A frozen feast: Thawing permafrost increases plant-available nitrogen in subarctic peatlands. Glob. Change Biol. 18, 1998–2007 (2012).

    Article  Google Scholar 

  37. Blagodatskaya, E. & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review. Biol. Fert. Soils 45, 115–131 (2008).

    Article  Google Scholar 

  38. Hicks Pries, C. E. et al. Decadal warming causes a consistent and persistent shift from heterotrophic to autotrophic respiration in contrasting permafrost ecosystems. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.13032 (2015).

  39. Belshe, E. F., Schuur, E. A. G. & Bolker, B. M. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol. Lett. 16, 1307–1315 (2013).

    Article  CAS  Google Scholar 

  40. Grant, R. F., Humphreys, E. R., Lafleur, P. M. & Dimitrov, D. D. Ecological controls on net ecosystem productivity of a mesic arctic tundra under current and future climates. J. Geophys. Res. 116, 2005–2012 (2011).

    Article  Google Scholar 

  41. Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).

    Article  CAS  Google Scholar 

  42. Bauer, J. E., Williams, P. M. & Druffel, E. R. Recovery of submilligram quantities of carbon dioxide from gas streams by molecular sieve for subsequent determination of isotopic carbon-13 and carbon-14 natural abundances. Anal. Chem. 64, 824–827 (1992).

    Article  CAS  Google Scholar 

  43. Vogel, J. S., Nelson, D. E. & Southon, J. R. 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29, 323–333 (1987).

    Article  CAS  Google Scholar 

  44. Midwood, A. J. et al. Collection and storage of CO2 for 13C analysis: An application to separate soil CO2 efflux into root-and soil-derived components. Rapid Commun. Mass Spectrom. 20, 3379–3384 (2006).

    Article  CAS  Google Scholar 

  45. Högberg, P. et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789–792 (2001).

    Article  Google Scholar 

  46. Lavoie, M., Mack, M. C. & Schuur, E. a. G. Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils. J. Geophys. Res. 116, G03013 (2011).

    Article  Google Scholar 

  47. Lee, H., Schuur, E. A., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob. Change Biol. 18, 515–527 (2012).

    Article  Google Scholar 

  48. Stuiver, M., Reimer, P. & Reimer, R. CALIB Radiocarbon Calibration (2013); http://calib.qub.ac.uk/calib

  49. Andrews, J. A., Matamala, R., Westover, K. M. & Schlesinger, W. H. Temperature effects on the diversity of soil heterotrophs and the δ13C of soil-respired CO2 . Soil Biol. Biochem. 32, 699–706 (2000).

    Article  CAS  Google Scholar 

  50. Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, e9672 (2010).

    Article  Google Scholar 

  51. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014); http://www.R-project.org

    Google Scholar 

  52. Risk, D., Kellman, L. & Beltrami, H. Carbon dioxide in soil profiles: Production and temperature dependence. Geophys. Res. Lett. 29, 11-1–11-4 (2002).

    Article  Google Scholar 

  53. Zuur, A. et al. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    Book  Google Scholar 

  54. Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models (2013); http://CRAN.R-project.org/package=nlme

  55. Mazerolle, M. Model Selection and Multimodel Inference Based on (Q)AIC(c) (2014); http://cran.r-project.org/web/packages/AICcmodavg/AICcmodavg.pdf

    Google Scholar 

Download references

Acknowledgements

This work was made possible by assistance from J. Curtis, K. Venz-Curtis, A. B. Lopez, D. DeRaps, D. Rogan, E. Pegoraro and D. Hicks. This work was funded by NSF DDIG (C.E.H.P.), NSF CAREER (E.A.G.S.), Bonanza Creek LTER (E.A.G.S.), DOE NICCR and NSF OPP (S.M.N. and E.A.G.S.).

Author information

Authors and Affiliations

Authors

Contributions

E.A.G.S. conceived and designed the warming experiment; S.M.N. designed and set up the warming experiment; C.E.H.P. designed the partitioning measurements, performed the field and lab work, analysed the data, and wrote the paper; K.G.C. performed lab analyses.

Corresponding author

Correspondence to Caitlin E. Hicks Pries.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hicks Pries, C., Schuur, E., Natali, S. et al. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Clim Change 6, 214–218 (2016). https://doi.org/10.1038/nclimate2830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing