Joint projections of US East Coast sea level and storm surge

Abstract

Future coastal flood risk will be strongly influenced by sea-level rise (SLR) and changes in the frequency and intensity of tropical cyclones. These two factors are generally considered independently. Here, we assess twenty-first century changes in the coastal hazard for the US East Coast using a flood index (FI) that accounts for changes in flood duration and magnitude driven by SLR and changes in power dissipation index (PDI, an integrated measure of tropical cyclone intensity, frequency and duration). Sea-level rise and PDI are derived from representative concentration pathway (RCP) simulations of 15 atmosphere–ocean general circulation models (AOGCMs). By 2080–2099, projected changes in the FI relative to 1986–2005 are substantial and positively skewed: a 10th–90th percentile range 4–75 times higher for RCP 2.6 and 35–350 times higher for RCP 8.5. High-end FI projections are driven by three AOGCMs that project the largest increases in SLR, PDI and upper ocean temperatures. Changes in PDI are particularly influential if their intra-model correlation with SLR is included, increasing the RCP 8.5 90th percentile FI by a further 25%. Sea-level rise from other, possibly correlated, climate processes (for example, ice sheet and glacier mass changes) will further increase coastal flood risk and should be accounted for in comprehensive assessments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Regions of analysis and CMIP5 RCP 8.5 ensemble SST warming projections.
Figure 2: CMIP5 ensemble spread in PDI and SLR.
Figure 3: Ocean warming patterns in the CMIP5 RCP 8.5 ensemble.
Figure 4: Eastern US flood index projections.
Figure 5: Sensitivities to the construction of the flood index.

References

  1. 1

    Woodruff, J. D., Irish, J. L. & Camargo, S. J. Coastal flooding by tropical cyclones and sea-level rise. Nature 504, 44–52 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Lin, N., Emanuel, K., Oppenheimer, M. & Vanmarcke, E. Physically based assessment of hurricane surge threat under climate change. Nature Clim. Change 2, 462–467 (2012).

    Article  Google Scholar 

  3. 3

    Tebaldi, C., Strauss, B. H. & Zervas, C. E. Modelling sea level rise impacts on storm surges along US coasts. Environ. Res. Lett. 7, 014032 (2012).

    Article  Google Scholar 

  4. 4

    Ezer, T. & Atkinson, L. P. Accelerated flooding along the U.S. East Coast: On the impact of sea-level rise, tides, storms, the Gulf Stream, and the North Atlantic Oscillations. Earth’s Future 2, 362–382 (2014).

    Article  Google Scholar 

  5. 5

    Kopp, R. E. et al. Probabilistic 21st and 22nd century sea-level projections at a global network of tide gauge sites. Earth’s Future 2, 383–406 (2014).

    Article  Google Scholar 

  6. 6

    Hunter, J. A simple technique for estimating an allowance for uncertain sea-level rise. Climatic Change 113, 239–252 (2012).

    Article  Google Scholar 

  7. 7

    Emanuel, K. A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl Acad. Sci. USA 110, 12219–12224 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Irish, J. & Resio, D. Method for estimating future hurricane flood probabilities and associated uncertainty. J. Waterway Port Coast. Ocean Eng. 139, 126–134 (2012).

    Article  Google Scholar 

  9. 9

    Aerts, J. C. J. H. et al. Evaluating flood resilience strategies for coastal megacities. Science 344, 473–475 (2014).

    Article  Google Scholar 

  10. 10

    Neumann, J. et al. Joint effects of storm surge and sea-level rise on US coasts: New economic estimates of impacts, adaptation, and benefits of mitigation policy. Climatic Change 129, 337–349 (2015).

    Article  Google Scholar 

  11. 11

    Houser, T. et al. American Climate Prospectus: Economic Risks in the United States (Rhodium Group, 2014); http://www.climateprospectus.org

    Google Scholar 

  12. 12

    Hoffman, R. N. et al. An estimate of increases in storm surge risk to property from sea level rise in the first half of the twenty-first century. Weath. Clim. Soc. 2, 271–293 (2010).

    Article  Google Scholar 

  13. 13

    Church, J. A. & Clark, P. U. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  14. 14

    Stammer, D., Cazenave, A., Ponte, R. M. & Tamisiea, M. E. Causes for contemporary regional sea level changes. Annu. Rev. Mar. Sci. 5, 21–46 (2013).

    Article  Google Scholar 

  15. 15

    Kopp, R. E., Hay, C. C., Little, C. M. & Mitrovica, J. X. Geographic variability of sea-level change. Curr. Clim. Change Rep. 1, 192–204 (2015).

    Article  Google Scholar 

  16. 16

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  17. 17

    Bouttes, N. & Gregory, J. M. Attribution of the spatial pattern of CO2-forced sea level change to ocean surface flux changes. Environ. Res. Lett. 9, 034004 (2014).

    Article  Google Scholar 

  18. 18

    Kuhlbrodt, T. & Gregory, J. M. Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change. Geophys. Res. Lett. 39, L18608 (2012).

    Article  Google Scholar 

  19. 19

    Yin, J. Century to multi-century sea level rise projections from CMIP5 models. Geophys. Res. Lett. 39, L17709 (2012).

    Google Scholar 

  20. 20

    Little, C. M., Horton, R. M., Kopp, R. E., Oppenheimer, M. & Yip, S. Uncertainty in 21st century CMIP5 sea level projections. J. Clim. 28, 838–852 (2015).

    Article  Google Scholar 

  21. 21

    Slangen, A. B. A. et al. Projecting twenty-first century regional sea-level changes. Climatic Change 124, 317–332 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Perrette, M., Landerer, F., Riva, R., Frieler, K. & Meinshausen, M. A scaling approach to project regional sea level rise and its uncertainties. Earth Syst. Dynam. 4, 11–29 (2013).

    Article  Google Scholar 

  23. 23

    Kirtman, B. & Power, S. B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 953–1028 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  24. 24

    Horton, R. M. & Liu, J. Beyond Hurricane Sandy: What might the future hold for tropical cyclones in the North Atlantic? J. Extreme Events 01, 1450007 (2014).

    Article  Google Scholar 

  25. 25

    Shaevitz, D. A. et al. Characteristics of tropical cyclones in high-resolution models in the present climate. J. Adv. Model. Earth Syst. 6, 1154–1172 (2014).

    Article  Google Scholar 

  26. 26

    Tang, B. & Camargo, S. J. Environmental control of tropical cyclones in CMIP5: A ventilation perspective. J. Adv. Model. Earth Syst. 6, 115–128 (2014).

    Article  Google Scholar 

  27. 27

    Tory, K. J., Chand, S. S., McBride, J. L., Ye, H. & Dare, R. A. Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the Coupled Model Intercomparison Project. J. Clim. 26, 9946–9959 (2013).

    Article  Google Scholar 

  28. 28

    Knutson, T. R. et al. Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Clim. 26, 6591–6617 (2013).

    Article  Google Scholar 

  29. 29

    Villarini, G. & Vecchi, G. A. Projected increases in North Atlantic tropical cyclone intensity from CMIP5 models. J. Clim. 26, 3231–3240 (2013).

    Article  Google Scholar 

  30. 30

    Villarini, G. & Vecchi, G. A. Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nature Clim. Change 2, 604–607 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Vecchi, G. A., Swanson, K. L. & Soden, B. J. Whither hurricane activity? Science 322, 687–689 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Emanuel, K. The dependence of hurricane intensity on climate. Nature 326, 483–485 (1987).

    Article  Google Scholar 

  33. 33

    Villarini, G. & Vecchi, G. A. Multi-season lead forecast of the North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE). J. Clim. 26, 3631–3643 (2013).

    Article  Google Scholar 

  34. 34

    Vecchi, G. A. & Soden, B. J. Increased tropical Atlantic wind shear in model projections of global warming. Geophys. Res. Lett. 34, L08702 (2007).

    Article  Google Scholar 

  35. 35

    Swanson, K. L. Nonlocality of Atlantic tropical cyclone intensities. Geochem. Geophys. Geosyst. 9, Q04V01 (2008).

    Article  Google Scholar 

  36. 36

    Balaguru, K., Taraphdar, S., Leung, L. R., Foltz, G. R. & Knaff, J. A. Cyclone–cyclone interactions through the ocean pathway. Geophys. Res. Lett. 41, 6855–6862 (2014).

    Article  Google Scholar 

  37. 37

    Gray, W. M. Atlantic seasonal hurricane frequency. part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Weath. Rev. 112, 1649–1668 (1984).

    Article  Google Scholar 

  38. 38

    Villarini, G., Vecchi, G. A. & Smith, J. A. Modeling the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Weath. Rev. 138, 2681–2705 (2010).

    Article  Google Scholar 

  39. 39

    Villarini, G. & Vecchi, G. A. North Atlantic Power Dissipation Index (PDI) and Accumulated Cyclone Energy (ACE): Statistical modeling and sensitivity to sea surface temperature changes. J. Clim. 25, 625–637 (2012).

    Article  Google Scholar 

  40. 40

    Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481–484 (2015).

    CAS  Article  Google Scholar 

  41. 41

    Yin, J., Griffies, S. M. & Stouffer, R. J. Spatial variability of sea level rise in twenty-first century projections. J. Clim. 23, 4585–4607 (2010).

    Article  Google Scholar 

  42. 42

    Hallberg, R., Adcroft, A., Dunne, J. P., Krasting, J. P. & Stouffer, R. J. Sensitivity of twenty-first-century global-mean steric sea level rise to ocean model formulation. J. Clim. 26, 2947–2956 (2013).

    Article  Google Scholar 

  43. 43

    Winton, M. et al. Influence of ocean and atmosphere components on simulated climate sensitivities. J. Clim. 26, 231–245 (2012).

    Article  Google Scholar 

  44. 44

    Cheng, W., Chiang, J. C. H. & Zhang, D. Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and historical simulations. J. Clim. 26, 7187–7197 (2013).

    Article  Google Scholar 

  45. 45

    Yin, J. & Goddard, P. B. Oceanic control of sea level rise patterns along the east coast of the United States. Geophys. Res. Lett. 40, 5514–5520 (2013).

    Article  Google Scholar 

  46. 46

    Ezer, T., Atkinson, L. P., Corlett, W. B. & Blanco, J. L. Gulf Stream’s induced sea level rise and variability along the US mid-Atlantic coast. J. Geophys. Res. 118, 685–697 (2013).

    Article  Google Scholar 

  47. 47

    Thompson, P. R., Mitchum, G. T., Vonesch, C. & Li, J. Variability of winter storminess in the eastern United States during the twentieth century from tide gauges. J. Clim. 26, 9713–9726 (2013).

    Article  Google Scholar 

  48. 48

    Scoccimarro, E. et al. Intense precipitation events associated with landfalling tropical cyclones in response to a warmer climate and increased CO2 . J. Clim. 27, 4642–4654 (2014).

    Article  Google Scholar 

  49. 49

    Villarini, G. et al. Sensitivity of tropical cyclone rainfall to idealized global-scale forcings. J. Clim. 27, 4622–4641 (2014).

    Article  Google Scholar 

  50. 50

    Grinsted, A., Moore, J. C. & Jevrejeva, S. Homogeneous record of Atlantic hurricane surge threat since 1923. Proc. Natl Acad. Sci. USA 109, 19601–19605 (2012).

    CAS  Article  Google Scholar 

  51. 51

    Grinsted, A., Moore, J. C. & Jevrejeva, S. Projected Atlantic hurricane surge threat from rising temperatures. Proc. Natl Acad. Sci. USA 110, 5369–5373 (2013).

    CAS  Article  Google Scholar 

  52. 52

    National Research Council Reducing Coastal Risk on the East and Gulf Coasts (National Academies Press, 2014).

    Google Scholar 

  53. 53

    Fischer, E. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nature Clim. Change 3, 126–130 (2013).

    Article  Google Scholar 

  54. 54

    Doodson, A. & Warburg, H. D. Admiralty Manual of Tides (Hydrographic Department, Admiralty, 1941).

    Google Scholar 

  55. 55

    Landsea, C. W. & Franklin, J. L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weath. Rev. 141, 3576–3592 (2013).

    Article  Google Scholar 

  56. 56

    Emanuel, K. Environmental factors affecting tropical cyclone power dissipation. J. Clim. 20, 5497–5509 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

C.M.L. is grateful for inspiration from the New York City Panel on Climate Change and the Structures of Coastal Resilience project (http://www.structuresofcoastalresilience.org), discussions with R. Ponte, C. Piecuch and K. Quinn, and financial support from the Carbon Mitigation Initiative in the Princeton Environmental Institute. The NOAA Geophysical Fluid Dynamics Laboratory provided data and analysis tools. R.E.K.’s contribution to this project was supported by New Jersey Sea Grant project 6410-0012 (under NOAA grant NA11OAR4310101). G.V. acknowledges financial support from the USACE Institute for Water Resources. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Tables 1 and 2) for producing and making available their model output. The US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support for CMIP and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Affiliations

Authors

Contributions

C.M.L. designed the research. C.M.L., R.E.K., G.V. and G.A.V. conducted the data analysis. All authors contributed extensively to the paper writing, editing, and revision.

Corresponding author

Correspondence to Christopher M. Little.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Little, C., Horton, R., Kopp, R. et al. Joint projections of US East Coast sea level and storm surge. Nature Clim Change 5, 1114–1120 (2015). https://doi.org/10.1038/nclimate2801

Download citation

Further reading