Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Targeted opportunities to address the climate–trade dilemma in China


International trade has become the fastest growing driver of global carbon emissions, with large quantities of emissions embodied in exports from emerging economies. International trade with emerging economies poses a dilemma for climate and trade policy: to the extent emerging markets have comparative advantages in manufacturing, such trade is economically efficient and desirable. However, if carbon-intensive manufacturing in emerging countries such as China entails drastically more CO2 emissions than making the same product elsewhere, then trade increases global CO2 emissions. Here we show that the emissions embodied in Chinese exports, which are larger than the annual emissions of Japan or Germany, are primarily the result of China’s coal-based energy mix and the very high emissions intensity (emission per unit of economic value) in a few provinces and industry sectors. Exports from these provinces and sectors therefore represent targeted opportunities to address the climate–trade dilemma by either improving production technologies and decarbonizing the underlying energy systems or else reducing trade volumes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emissions embodied in trade.
Figure 2: China’s emission exports and the top exporting provinces.
Figure 3: Differences in share of embodied emissions traded by industry categories.
Figure 4: Sectoral share of China’s embodied emissions.
Figure 5: Factors contributing to emissions embodied in provincial trade.


  1. Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC, 1997).

  2. COP15 Copenhagen Accord (UNFCCC, 2009);

  3. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165–185 (2013).

    Article  Google Scholar 

  4. Andres, R. J. et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences 9, 1845–1871 (2012).

    Article  CAS  Google Scholar 

  5. Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    Article  CAS  Google Scholar 

  6. Liu, Z. et al. A low-carbon road map for China. Nature 500, 143–145 (2013).

    Article  CAS  Google Scholar 

  7. Weber, C. L., Peters, G. P., Guan, D. & Hubacek, K. The contribution of Chinese exports to climate change. Energy Policy 36, 3572–3577 (2008).

    Article  Google Scholar 

  8. Feng, K. et al. Outsourcing CO2 within China. Proc. Natl Acad. Sci. USA 110, 11654–11659 (2013).

    Article  CAS  Google Scholar 

  9. Le Quéré, C. et al. Global carbon budget 2014. Earth Syst. Sci. Data 7, 47–85 (2015).

    Article  Google Scholar 

  10. Jakob, M. & Marschinski, R. Interpreting trade-related CO2 emission transfers. Nature Clim. Change 3, 19–23 (2013).

    Article  Google Scholar 

  11. Minx, J. et al. A “Carbonizing Dragon”: China’s fast growing CO2 emissions revisited. Environ. Sci. Technol. 45, 9144–9153 (2011).

    Article  CAS  Google Scholar 

  12. Guan, D., Peters, G. P., Weber, C. L. & Hubacek, K. Journey to world top emitter: An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys. Res. Lett. 36, L04709 (2009).

    Article  Google Scholar 

  13. Jiang, X. et al. Revealing the hidden health costs embodied in Chinese exports. Environ. Sci. Technol. 49, 4381–4388 (2015).

    Article  CAS  Google Scholar 

  14. Liu, Z. China’s Carbon Emissions Report 2015 (Harvard Kennedy School, 2015).

    Google Scholar 

  15. Liu, Z., Geng, Y., Lindner, S. & Guan, D. Uncovering China’s greenhouse gas emission from regional and sectoral perspectives. Energy 45, 1059–1068 (2012).

    Article  Google Scholar 

  16. Feng, K., Siu, Y. L., Guan, D. & Hubacek, K. Analyzing drivers of regional carbon dioxide emissions for China. J. Ind. Ecol. 16, 600–611 (2012).

    Article  CAS  Google Scholar 

  17. Lindner, S., Liu, Z., Guan, D., Geng, Y. & Li, X. CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives. Renew. Sustain. Energy Rev. 19, 164–172 (2013).

    Article  Google Scholar 

  18. Liu, Z. et al. Embodied energy use in China’s industrial sectors. Energy Policy 49, 751–758 (2012).

    Article  Google Scholar 

  19. Ang, B. W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 33, 867–871 (2005).

    Article  Google Scholar 

  20. Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nature Geosci. 7, 709–715 (2014).

    Article  CAS  Google Scholar 

  21. Liu, Z., Xi, F. & Guan, D. Climate negotiations: Tie carbon emissions to consumers. Nature 493, 304–305 (2013).

    Article  CAS  Google Scholar 

  22. Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl Acad. Sci. USA 108, 18554–18559 (2011).

    Article  CAS  Google Scholar 

  23. Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    Article  CAS  Google Scholar 

  24. National Bureau of Statistics China Statistical Yearbook 2013 (China Statistics Press, 2013).

    Google Scholar 

  25. Yang, Y. & Suh, S. Environmental impacts of products in China. Environ. Sci. Technol. 45, 4102–4109 (2011).

    Article  CAS  Google Scholar 

  26. Introduction to LCA with SimaPro 7 (PRé Consultants, 2008).

  27. Yang, D., Liu, J., Yang, J. & Ding, N. Life-cycle assessment of China’s multi-crystalline silicon photovoltaic modules considering international trade. J. Cleaner Prod. 94, 35–45 (2015).

    Article  CAS  Google Scholar 

  28. Liu, Z. et al. Climate policy: Steps to China’s carbon peak. Nature 522, 279–281 (2015).

    Article  CAS  Google Scholar 

  29. Guan, D. et al. Determinants of stagnating carbon intensity in China. Nature Clim. Change 4, 1017–1023 (2014).

    Article  CAS  Google Scholar 

  30. Liu, Z. et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 524, 335–338 (2015).

    Article  CAS  Google Scholar 

  31. IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (IGES, 2006).

    Google Scholar 

  32. Feng, K., Hubacek, K., Pfister, S., Yu, Y. & Sun, L. Virtual scarce water in China. Environ. Sci. Technol. 48, 7704–7713 (2014).

    Article  CAS  Google Scholar 

  33. Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).

    Article  Google Scholar 

  34. Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).

    Article  CAS  Google Scholar 

  35. Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 110–112 (2012).

    Article  Google Scholar 

  36. Yu, Y., Feng, K. & Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Change 23, 1178–1186 (2013).

    Article  Google Scholar 

  37. Weinzettel, J., Hertwich, E. G., Peters, G. P., Steen-Olsen, K. & Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Change 23, 433–438 (2013).

    Article  Google Scholar 

  38. Guan, D., Liu, Z., Geng, Y., Lindner, S. & Hubacek, K. The gigatonne gap in China’s carbon dioxide inventories. Nature Clim. Change 2, 672–675 (2012).

    Article  CAS  Google Scholar 

  39. Narayanan, B. G., Aguiar, A. & Walmsley, T. L. Global Trade, Assistance, and Production: The GTAP 8 Data Base (Purdue University, 2012).

    Google Scholar 

  40. Liu, W. Theories and Practice of Constructing China’s Interregional Input–Output Tables between 30 Provinces in 2007 (Chinese Statistics Press, 2012).

    Google Scholar 

Download references


This work was supported by China’s National Basic Research Program (2014CB441301), the State Key Laboratory of Urban and Regional Ecology, Chinese Academy of Sciences (SKLURE 2015-2-6), and Natural Science Foundation of China project (41328008). Z.L. acknowledges the National Natural Science Foundation of China-NSFC 41501605, the China Sustainable Energy Program of Energy Foundation (G-1407-21749), the Giorgio Ruffolo fellowship and the support from Italy’s Ministry for Environment, Land and Sea. S.J.D. acknowledges support from the Institute of Applied Ecology, Chinese Academy of Sciences Fellowships for Young International Distinguished Scientists. S.L. acknowledges the support of the Dow Sustainability Fellows Program. D.G. acknowledges the Economic and Social Research Council funded project ‘Dynamics of Green Growth in European and Chinese Cities’ (ES/L016028) and his Philip Leverhulme Prize.

Author information

Authors and Affiliations



Z.L., K.F. and S.J.D. designed the research. Z.L., K.F. and S.J.D. conceived the paper. K.F. and J.L. provided the data. Z.L., S.J.D., K.F. and K.H. performed the analysis. S.J.D. drew the figures. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Steven J. Davis, Kuishuang Feng or Dabo Guan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Davis, S., Feng, K. et al. Targeted opportunities to address the climate–trade dilemma in China. Nature Clim Change 6, 201–206 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing