Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate velocity and the future global redistribution of marine biodiversity


Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management1 but remains a critical knowledge gap2. Here, we use climate velocity trajectories3, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways4 (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies5,6. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts7,8 highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Redistribution of global biodiversity patterns under future climate change.
Figure 2: Partitioning of cell-based temporal β-diversity under future climate change.
Figure 3: Spatial homogenization of present-day communities under future climate change.
Figure 4: Projected changes in species richness and community composition in relation to contemporary human impacts.


  1. 1

    Hannah, L. et al. Global climate change adaptation priorities for biodiversity and food security. PLoS ONE 8, e72590 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    CAS  Article  Google Scholar 

  4. 4

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article  Google Scholar 

  6. 6

    Jones, M. C. & Cheung, W. W. L. Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES J. Mar. Sci. 72, 741–752 (2014).

    Article  Google Scholar 

  7. 7

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nature Commun. 6, 7615 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    CAS  Article  Google Scholar 

  9. 9

    Leadley, P. et al. Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services Report No. 92-9225-219-4 (Montreal, Canada: Secretariat of the Convention on Biological Diversity, 2010)

  10. 10

    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).

    Article  Google Scholar 

  11. 11

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nature Clim. Change 3, 919–925 (2013).

    Article  Google Scholar 

  12. 12

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 4–6 (2013).

    Article  Google Scholar 

  15. 15

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Hiddink, J. G., Burrows, M. T. & García Molinos, J. Temperature tracking by North Sea benthic invertebrates in response to climate change. Glob. Change Biol. 21, 117–129 (2014).

    Article  Google Scholar 

  17. 17

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species Version 08/2013 (2013);

  19. 19

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl Acad. Sci. USA 109, 21378–21383 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Nguyen, K. D. T. et al. Upper temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Somero, G. N. The physiology of climate change: How potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Article  Google Scholar 

  25. 25

    Koo, M. G. Island Disputes and Maritime Regime Building in East Asia (Springer, 2009).

    Google Scholar 

  26. 26

    Renema, W. et al. Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654–657 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Keith, S. A., Baird, A. H., Hughes, T. P., Madin, J. S. & Connolly, S. R. Faunal breaks and species composition of Indo-Pacific corals: The role of plate tectonics, environment and habitat distribution. Proc. R. Soc. B 280, 20130818 (2013).

    CAS  Article  Google Scholar 

  28. 28

    Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).

    Article  Google Scholar 

  30. 30

    Craig, R. K. Ocean governance for the 21st century: Making marine zoning climate change adaptable. Harv. Environ. Law Rev. 36, 305–350 (2012).

    Google Scholar 

  31. 31

    Beaugrand, G., Edwards, M., Raybaud, V., Goberville, E. & Kirby, R. R. Future vulnerability of marine biodiversity compared with contemporary and past changes. Nature Clim. Change 5, 695–701 (2015).

    Article  Google Scholar 

  32. 32

    Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114, 106–115 (2010).

    Article  Google Scholar 

  33. 33

    Selig, E. R. et al. Global priorities for marine biodiversity conservation. PLoS ONE 9, e82898 (2014).

    Article  Google Scholar 

  34. 34

    Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  35. 35

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nature Clim. Change 2, 686–690 (2012).

    Article  Google Scholar 

  36. 36

    Denny, M. W. & Dowd, W. W. Biophysics, environmental stochasticity, and the evolution of thermal safety margins in intertidal limpets. J. Exp. Biol. 215, 934–947 (2012).

    CAS  Article  Google Scholar 

  37. 37

    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Article  Google Scholar 

  38. 38

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Global Ecol. Biogeogr. 19, 134–143 (2010).

    Article  Google Scholar 

  39. 39

    van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Change Biol. 20, 103–112 (2014).

    Article  Google Scholar 

  40. 40

    Synes, N. W. & Osborne, P. E. Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Glob. Ecol. Biogeogr. 20, 904–914 (2011).

    Article  Google Scholar 

  41. 41

    Ready, J. et al. Predicting the distributions of marine organisms at the global scale. Ecol. Model. 221, 467–478 (2010).

    Article  Google Scholar 

  42. 42

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2009).

    Article  Google Scholar 

Download references


J.G.M., M.T.B., and P.J.M. were supported by the UK National Environmental Research Council grant NE/J024082/1. J.G.M. thanks the additional support received from the International Research Fellow Programme of the Japan Society for the Promotion of Science (JSPS/FF1/434). D.S.S. and J.M.P. were respectively supported by the Australian Commonwealth’s Collaborative Research Network and the Australian Research Council’s Centre of Excellence for Coral Reef Studies. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, responsible for CMIP, and thank the groups (Supplementary Table 1) for producing and making available their model output.

Author information




J.G.M. and M.T.B. conceived the research and developed the model. B.S.H. provided species distribution and cumulative human impact data. J.G.M. conducted the analysis. All authors contributed to discussion of ideas and J.G.M. drafted the paper with substantial input from all authors.

Corresponding author

Correspondence to Jorge García Molinos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García Molinos, J., Halpern, B., Schoeman, D. et al. Climate velocity and the future global redistribution of marine biodiversity. Nature Clim Change 6, 83–88 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing