Letter | Published:

Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies

Nature Climate Change volume 5, pages 941945 (2015) | Download Citation

Abstract

Climate change is expected to increase the frequency of some climatic extremes1,2. These may have drastic impacts on biodiversity3,4, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with ‘business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & No pause in the increase of hot temperature extremes. Nature Clim. Change 4, 161–163 (2014).

  2. 2.

    et al. Increasing frequency of extreme El Nino events due to greenhouse warming. Nature Clim. Change 4, 111–116 (2014).

  3. 3.

    et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. (eds Field, C. B. et al.) 271–359 (IPCC, Cambridge Univ. Press, 2014).

  4. 4.

    , & A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

  5. 5.

    et al. Impacts of climate change on future biodiversity. Ecol. Lett. 15, 365–377 (2012).

  6. 6.

    et al. Consequences of climate change on the tree of life in Europe. Nature 470, 531–534 (2011).

  7. 7.

    , & Community responses to extreme climatic conditions. Curr. Zool. 57, 406–413 (2011).

  8. 8.

    et al. Thermal range predicts bird population resilience to extreme high temperatures. Ecol. Lett. 9, 1321–1330 (2006).

  9. 9.

    et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).

  10. 10.

    & Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. WIREs-Clim. Change 5, 317–335 (2014).

  11. 11.

    , , & Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).

  12. 12.

    et al. Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Glob. Ecol. Biogeogr. 11, 7–22 (2002).

  13. 13.

    , & Major droughts in England and Wales, 1800–2006. Weather 62, 87–93 (2007).

  14. 14.

    , & The cost of melanisation: Butterfly wing colouration under environmental stress. Evolution 58, 360–366 (2004).

  15. 15.

    , & Beyond climate envelopes: Effects of weather on regional population trends in butterflies. Oecologia 167, 559–571 (2011).

  16. 16.

    , & Drought changes plant chemistry and causes contrasting responses in lepidopteran herbivores. Oikos 120, 1732–1740 (2011).

  17. 17.

    et al. Climatic Risk Atlas of European Butterflies (Pensoft, 2008).

  18. 18.

    , , & The UK Land Cover Map 2000: Construction of a parcel-based vector map from satellite images. Cartogr. J. 39, 15–25 (2002).

  19. 19.

    et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2008).

  20. 20.

    et al. Heterogeneous landscapes promote population stability. Ecol. Lett. 13, 473–484 (2010).

  21. 21.

    et al. Edge effects and forest water use: A field study in a mixed deciduous woodland. Forest Ecol. Manag. 250, 176–186 (2007).

  22. 22.

    , & Air and soil microclimates of deciduous woodland compared to an open site. Agric. Forest Meteorol. 90, 141–156 (1998).

  23. 23.

    Metapopulation Ecology (Oxford Univ. Press, 1999).

  24. 24.

    , & An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

  25. 25.

    et al. The representative concentration pathways: An overview. Climatic Change 109, 5–31 (2011).

  26. 26.

    , , & The climate policy narrative for a dangerously warming world. Nature Clim. Change 4, 164–166 (2014).

  27. 27.

    , , & Habitat area, quality and connectivity: Striking the balance for efficient conservation. J. Appl. Ecol. 48, 148–152 (2011).

  28. 28.

    et al. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nature Clim. Change 3, 244–248 (2013).

  29. 29.

    & Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).

  30. 30.

    et al. The State of the UK’s Butterflies 2011 (Butterfly Conservation and the Centre for Ecology and Hydrology, 2011).

  31. 31.

    Central England temperatures: Monthly means 1659 to 1973. Q. J. R. Meteorol. Soc. 100, 389 (1974).

  32. 32.

    & Updated precipitation series for the U. K. and discussion of recent extremes. Atmos. Sci. Lett. 1, 142 (2001).

  33. 33.

    , & Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography 36, 579 (2013).

  34. 34.

    , , & FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps (Univ. Massachusetts, 2002);

  35. 35.

    & Application of generalized additive models to butterfly transect count data. J. Appl. Stat. 28, 897 (2001).

  36. 36.

    & Metapopulation viability analysis of the bog fritillary butterfly using RAMAS/GIS. Oikos 104, 277 (2004).

  37. 37.

    The R Book 2nd edn (John Wiley, 2012).

  38. 38.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2013);

  39. 39.

    , , & lme4: Linear Mixed-Effects Models using Eigen and S4 R package version 1.0-4 (2013);

Download references

Acknowledgements

This research was partly funded by Natural England Project ref. 24802 and partly by NERC CEH national capability funding. We thank A. Crowe from the UK Food and Environment Research Agency for calculating habitat configuration metrics and S. Duffield for help in establishing the project. The UKBMS is funded by a multi-agency consortium led by Defra, and including CCW, JNCC, FC, NE, NERC, NIEA and SNH.

Author information

Affiliations

  1. NERC Centre for Ecology and Hydrology, Wallingford, Oxfordshire OX10 8BB, UK

    • Tom H. Oliver
    • , Christel Prudhomme
    •  & Chris Huntingford
  2. University of Reading, Whiteknights, PO Box 217, Reading, Berkshire RG6 6AH, UK

    • Tom H. Oliver
  3. University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK

    • Harry H. Marshall
  4. Natural England, Foundry House, 3 Millsands, Riverside Exchange, Sheffield S3 8NH, UK

    • Mike D. Morecroft
  5. Butterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset BH20 5QP, UK

    • Tom Brereton

Authors

  1. Search for Tom H. Oliver in:

  2. Search for Harry H. Marshall in:

  3. Search for Mike D. Morecroft in:

  4. Search for Tom Brereton in:

  5. Search for Christel Prudhomme in:

  6. Search for Chris Huntingford in:

Contributions

T.H.O. conceived the study with input from M.D.M.; C.P. and C.H. analysed climate data; H.H.M. and T.H.O. analysed butterfly responses to habitat and climate; all authors interpreted results and contributed to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Tom H. Oliver.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nclimate2746

Further reading