Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Usefulness and limitations of global flood risk models

Global flood risk models were developed to identify risk hotspots in a world with increasing flood occurrence. Here we assess the ability and limitations of the current models and suggest what is needed moving forward.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Example hazard data from a global flood model, overlaid on impervious surface area (ISA) data27 as an indicator of exposure.

References

  1. Dilley, M. et al. Natural Disaster Hotspots. A Global Risk Analysis (The World Bank, 2005).

    Book  Google Scholar 

  2. Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Nature Clim. Change 3, 802–806 (2013).

    Article  Google Scholar 

  3. Hirabayashi, Y. et al. Nature Clim. Change 3, 816–821 (2013).

    Article  Google Scholar 

  4. UNISDR Global Assessment Report on Disaster Risk Reduction. Making Development Sustainable: The Future of Disaster Risk Management (United Nations International Strategy for Disaster Reduction Secretariat, 2015).

  5. Ward, P. J. et al. Environ. Res. Lett. 8, 044019 (2013).

    Article  Google Scholar 

  6. Winsemius, H. C., Van Beek, R., Jongman, B., Ward, P. J. & Bouwman, A. Hydrol. Earth Syst. Sci. 17, 1871–1892 (2013).

    Article  Google Scholar 

  7. Ward, P. J. et al. Proc. Natl Acad. Sci. USA 111, 15659–15664 (2014).

    CAS  Article  Google Scholar 

  8. Understanding Risk: Producing Actionable Information (World Bank, 2015).

  9. Sendai Framework for Disaster Risk Reduction 2015–2030 A/CONF.224/L.2 (United Nations, 2015).

  10. Decision2/CP.19 Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts (UNFCCC, 2013).

  11. Jonkman, S. N. Nature Clim. Change 3, 1004 (2013).

    Article  Google Scholar 

  12. Bates, P. D., Horritt, M. S. & Fewtrell, T. J. J. Hydro. 387, 33–45 (2010).

    Article  Google Scholar 

  13. Yamazaki, D. et al. Water Resour. Res. 50, 3467–3480 (2014).

    Article  Google Scholar 

  14. Bates, P. D., Smith, A., Sampson, C., Alfielri, L. & Neal, J. C. in Am. Geophys. Union Fall Meet. Abstract H33M-03 (AGU, 2014)

    Google Scholar 

  15. Mechler, R. et al. Nature Clim. Change 4, 235–237 (2014).

    Article  Google Scholar 

  16. Alfieri, L. et al. Hydrol. Earth Syst. Sci. 17, 1161–1175 (2013).

    Article  Google Scholar 

  17. Wu, H. et al. Water Resour. Res. 50, 2693–2717 (2014).

    Article  Google Scholar 

  18. Simpson, A. Better understanding disaster risk: a new dataset is set to make a difference. World Bank Voices Blog (24 September 2014); http://blogs.worldbank.org/voices/better-understanding-disaster-risk-new-dataset-set-make-difference

    Google Scholar 

  19. ASTER GDEM Version 2 (Land Processes Distributed Active Archive Center, 2015); https://lpdaac.usgs.gov/dataset_discovery/aster/aster_products_table/astgtm

  20. Schumann, G. J-P., Bates, P. D., Neal, J. C. & Andreadis, K. M. Nature 507, 169 (2014).

    CAS  Article  Google Scholar 

  21. Jongman, B. et al. Proc. Natl Acad. Sci. USA 112, E2271–E2280 (2015).

    CAS  Article  Google Scholar 

  22. Jongman, B. et al. Nat. Hazard Earth Sys. 12, 3733–3752 (2012).

    Article  Google Scholar 

  23. Haklay, M., Antoniou, V., Basiouka, S., Soden, R. & Mooney, P. Crowdsourced Geographic Information Use in Government (Global Facility for Disaster Reduction and Recovery and World Bank, 2015); http://go.nature.com/CUxelq

    Google Scholar 

  24. Rummukainen, M. WIREs Clim. Change 1, 82–96 (2010).

    Article  Google Scholar 

  25. Haasnoot, M., Kwakkel, J. H., Walker, W. E. & Ter Maat, J. Glob. Environ. Change 23, 485–498 (2013).

    Article  Google Scholar 

  26. De Groeve, T. et al. Bull. Am. Meteorol. Soc. 96, ES97–ES100 (2014).

    Article  Google Scholar 

  27. Elvidge, C. D. et al. Sensors 7, 1962–1979 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by a VENI grant from the Netherlands Organisation for Scientific Research (grant no. 863.11.011). The findings are drawn from workshops and discussions between users and modellers at the Understanding Risk Forum in London, 2014, the European Geosciences Union General Assembly in Vienna, 2015, and the Global Flood Partnership annual meeting in Boulder, 2015. We thank the participants of these events for their valuable contributions. The Uganda Red Cross forecast-based financing pilot is funded by the German Federal Ministry for Economic Cooperation and Development. The World Bank Caribbean Risk Information Programme (www.charim.net) is financed by the European Union-funded ACP-EU Natural Disaster Risk Reduction Program and managed by the Global Facility for Disaster Reduction and Recovery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Ward.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ward, P., Jongman, B., Salamon, P. et al. Usefulness and limitations of global flood risk models. Nature Clim Change 5, 712–715 (2015). https://doi.org/10.1038/nclimate2742

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2742

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing