Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term response of oceans to CO2 removal from the atmosphere

Abstract

Carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating global warming and ocean acidification. To assess the extent to which CDR might eliminate the long-term consequences of anthropogenic CO2 emissions in the marine environment, we simulate the effect of two massive CDR interventions with CO2 extraction rates of 5 GtC yr−1 and 25 GtC yr−1, respectively, while CO2 emissions follow the extended RCP8.5 pathway. We falsify two hypotheses: the first being that CDR can restore pre-industrial conditions in the ocean by reducing the atmospheric CO2 concentration back to its pre-industrial level, and the second being that high CO2 emissions rates (RCP8.5) followed by CDR have long-term oceanic consequences that are similar to those of low emissions rates (RCP2.6). Focusing on pH, temperature and dissolved oxygen, we find that even after several centuries of CDR deployment, past CO2 emissions would leave a substantial legacy in the marine environment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Globally averaged atmospheric variables.
Figure 2: Anomalies of globally averaged ocean variables for surface and entire ocean.
Figure 3: Zonally averaged anomalies of pH, temperature and dissolved oxygen, in year 2500.
Figure 4: Globally averaged pH anomalies as a function of atmospheric CO2 concentration.
Figure 5: Depth-resolved evolution of zonally averaged pH anomalies.

References

  1. Schellnhuber, H. J. et al. (eds) Avoiding Dangerous Climate Change (Cambridge Univ. Press, 2006).

  2. Archer, D. & Brovkin, V. Millennial atmospheric lifetime of anthropogenic CO2 . Climatic Change 90, 283–297 (2008).

    Article  CAS  Google Scholar 

  3. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  4. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  5. IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).

    Google Scholar 

  6. Caldeira, K., Bala, G. & Cao, L. The Science of geoengineering. Annu. Rev. Earth Planet. Sci. 41, 231–256 (2013).

    Article  CAS  Google Scholar 

  7. Cao, L. & Caldeira, K. Atmospheric carbon dioxide removal: Long-term consequences and commitment. Environ. Res. Lett. 5, 024011 (2010).

    Article  Google Scholar 

  8. Vaughan, N. E. & Lenton, T. M. A review of climate geoengineering proposals. Climatic Change 109, 745–790 (2009).

    Article  Google Scholar 

  9. National Research Council Climate Intervention: Reflecting Sunlight to Cool Earth (The National Academies Press, 2015).

    Google Scholar 

  10. Matthews, D. L., Cao, L. & Caldeira, K. Sensitivity of ocean acidification to geoengineered climate stabilization. Geophys. Res. Lett. 36, L10706 (2009).

    Article  Google Scholar 

  11. National Research Council Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (The National Academies Press, 2015).

    Google Scholar 

  12. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  13. Pielke, R. Jr. Air capture update. Nature Geosci. 2 http://dx.doi.org/10.1038/ngeo690 (2009)

  14. Petit, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  CAS  Google Scholar 

  15. Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: Projections with CMIP5 models. Biogeosci. Discuss. 10, 3627–3676 (2013).

    Article  Google Scholar 

  16. Cocco, V. et al. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences 10, 1849–1868 (2013).

    Article  CAS  Google Scholar 

  17. Schewe, J., Levermann, A. & Meinshausen, M. Climate change under a scenario near 1.5 °C of global warming: Monsoon intensification, ocean warming and steric sea level rise. Earth Syst. Dyn. 2, 25–35 (2011).

    Article  Google Scholar 

  18. Matear, R. J. & Hirst, A. C. Long-term changes in dissolved oxygen concentrations in the ocean caused by protracted global warming. Glob. Biogeochem. Cycles 17, 1125 (2003).

    Google Scholar 

  19. Matear, R. J., Hirst, A. C. & McNeil, B. I. Changes in dissolved oxygen in the Southern Ocean with climate change. Geochem. Geophys. Geosyst. 1, 2000GC000086 (2000).

    Article  Google Scholar 

  20. Hofmann, M., Worm, B., Rahmstorf, S. & Schellnhuber, H. J. Declining ocean chlorophyll under unabated anthropogenic CO2 emissions. Environ. Res. Lett. 6, 034035 (2011).

    Article  Google Scholar 

  21. Guinotte, J. M. & Fabry, V. J. Ocean acidification and its potential effects on marine ecosystems. Ann. N. Y. Acad. Sci. 1134, 320–342 (2008).

    Article  CAS  Google Scholar 

  22. Penman, D. E., Hönisch, B., Zeebe, R. E., Thomas, E. & Zachos, J. C. Rapid and sustained surface ocean acidification during the Paleocene–Eocene Thermal Maximum. Paleoceanography 29, 357–369 (2014).

    Article  Google Scholar 

  23. Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008).

    Article  CAS  Google Scholar 

  24. Gruber, N. Warming up, turning sour, losing breath: Ocean biogeochemistry under global change. Phil. Trans. R. Soc. A 369, 1980–1996 (2011).

    Article  CAS  Google Scholar 

  25. Bednarsek, N. et al. Murphy Extensive dissolution of live pteropods in the Southern Ocean. Nature Geosci. 5, 881–885 (2012).

    Article  CAS  Google Scholar 

  26. Eakin, C. M. et al. Caribbean Corals in crisis: Record thermal stress, bleaching, and mortality in 2005. PLoS ONE 5, e13969 (2010).

    Article  Google Scholar 

  27. Wittmann, A. C. & Pörtner, H. Sensitivities of extant animal taxa to ocean acidification. Nature Clim. Change 3, 995–1001 (2013).

    Article  CAS  Google Scholar 

  28. Hofmann, M. & Schellnhuber, H. J. Ocean acidification: A millennial challenge. Energy Environ. Sci. 3, 1883–1896 (2010).

    Article  CAS  Google Scholar 

  29. Veron, J. E. N. et al. The coral reef crisis: The critical importance of < 350 ppm CO2 . Mar. Pollut. Bull. 58, 1428–1436 (2009).

    Article  CAS  Google Scholar 

  30. Maier-Reimer, E. & Hasselmann, K. Transport and storage of CO2 in the ocean—an inorganic ocean-circulation carbon cycle model. Clim. Dynam. 2, 63–90 (1987).

    Article  Google Scholar 

  31. Eby, M. et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Clim. Past 9, 1111–1140 (2013).

    Article  Google Scholar 

  32. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article  CAS  Google Scholar 

  33. Caldecott, B. L., Lomax, G. & Workman, M. Stranded Carbon Assets and Negative Emissions Technologies (NETs) (Smith School of Enterprise and Environment, Working Paper Series, Univ. Oxford, 2015)

  34. Cao, L., Han, Z., Meidi, Z. & Shuangjing, W. Response of ocean acidification to a gradual increase and decrease of atmospheric CO2 . Environ. Res. Lett. 9, 024012 (2014).

    Article  Google Scholar 

  35. Schellnhuber, H. J. Geoengineering: The good, the MAD, and the sensible. Proc. Natl Acad. Sci. USA 108, 20277–20278 (2011).

    Article  CAS  Google Scholar 

  36. Claussen, M. et al. Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Clim. Dynam. 18, 579–586 (2002).

    Article  Google Scholar 

  37. Montoya, M. et al. The Earth system model of intermediate complexity CLIMBER-3α. Part I: Description and performance for present-day conditions. Clim. Dynam. 25, 237–263 (2005).

    Article  Google Scholar 

  38. Brovkin, V., Kim, J.-H., Hofmann, M. & Schneider, R. A lowering effect of reconstructed Holocene changes in sea surface temperatures on the atmospheric CO2 concentration. Glob. Biogeochem. Cycles 22, GB1016 (2008).

    Article  Google Scholar 

  39. Pacanowski, R. C. & Griffies, S. M. The MOM-3 Manual Technical Report 4 (GFDL Ocean Group, NOAA/Geophysical Fluid Dynamics Laboratory, 1999)

  40. Petoukhov, V. et al. CLIMBER-2: A climate system model of intermediate complexity Part I: Model description and performance for present climate. Clim. Dynam. 16, 1–17 (2000).

    Article  Google Scholar 

  41. Fichefet, T. & Maqueda, M. A. M. Sensitivity of a global sea ice model to the treatment of ice thermodynamics. J. Geophys. Res. 102, 12,609–12,646 (1997).

    Article  Google Scholar 

  42. Six, K. & Maier-Reimer, E. Effects of phytoplankton on seasonal carbon fluxes in an ocean general circulation model. Glob. Biogeochem. Cycles 10, 559–583 (1996).

    Article  CAS  Google Scholar 

  43. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992).

    Article  Google Scholar 

  44. Stouffer, R. J. et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 19, 1365–1387 (2006).

    Article  Google Scholar 

  45. Gregory, J. M. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, 1365–1387 (2005).

    Article  Google Scholar 

  46. Petoukhov, V. et al. EMIC Intercomparison Project (EMIP–CO2): Comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim. Dynam. 25, 363–385 (2005).

    Article  Google Scholar 

  47. Cao, L. et al. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change. Environ. Res. Lett. 9, 064005 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

Computational resources were provided by the Potsdam Institute for Climate Impact Research (PIK). CO2 emission data were provided by M. Meinshausen from PIK, downloaded from his website: http://www.pik-potsdam.de/˜mmalte/rcps.

Author information

Authors and Affiliations

Authors

Contributions

H.J.S. conceived and designed the study with S.M., M.H. and K.C. M.H. coupled the EMIC CLIMBER-3α with the biogeochemical model and S.M. wrote the CDR code. S.M. carried out the simulations, analysed the results and produced the figures under the guidance of M.H., K.C. and H.J.S. S.M. wrote the first draft and all authors made contributions to writing the manuscript.

Corresponding author

Correspondence to Sabine Mathesius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mathesius, S., Hofmann, M., Caldeira, K. et al. Long-term response of oceans to CO2 removal from the atmosphere. Nature Clim Change 5, 1107–1113 (2015). https://doi.org/10.1038/nclimate2729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing