Article | Published:

Responses of pink salmon to CO2-induced aquatic acidification

Nature Climate Change volume 5, pages 950955 (2015) | Download Citation

Abstract

Ocean acidification negatively affects many marine species and is predicted to cause widespread changes to marine ecosystems. Similarly, freshwater ecosystems may potentially be affected by climate-change-related acidification; however, this has received far less attention. Freshwater fish represent 40% of all fishes, and salmon, which rear and spawn in freshwater, are of immense ecosystem, economical and cultural importance. In this study, we investigate the impacts of CO2-induced acidification during the development of pink salmon, in freshwater and following early seawater entry. At this critical and sensitive life stage, we show dose-dependent reductions in growth, yolk-to-tissue conversion and maximal O2 uptake capacity; as well as significant alterations in olfactory responses, anti-predator behaviour and anxiety under projected future increases in CO2 levels. These data indicate that future populations of pink salmon may be at risk without mitigation and highlight the need for further studies on the impact of CO2-induced acidification on freshwater systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , & Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecol. Lett. 13, 68–75 (2010).

  2. 2.

    , & Ocean acidification affects prey detection by a predatory reef fish. PLoS ONE 6, e22736 (2011).

  3. 3.

    et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish. Proc. Natl Acad. Sci. USA 106, 1848–1852 (2009).

  4. 4.

    et al. Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nature Clim. Change 2, 201–204 (2012).

  5. 5.

    , & CO2-induced ocean acidification increases anxiety in rockfish via alteration of GABAA receptor functioning. Proc. R. Soc. B 281, 20132509 (2014).

  6. 6.

    , , & Behavioural disturbances in a temperate fish exposed to sustained high-CO2 levels. PLoS ONE 8, e65825 (2013).

  7. 7.

    , , , & Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front. Ecol. Environ. 8, 145–152 (2009).

  8. 8.

    et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

  9. 9.

    & Anadromous fish as keystone species in vertebrate communities. Conserv. Biol. 9, 489–497 (1995).

  10. 10.

    The Behavior and Ecology of Pacific Salmon and Trout (Univ. Washington Press, 2005).

  11. 11.

    , , & in Fish Larval Physiology (eds Finn, R. N. & Kapoor, B. G.) 639–681 (Science, 2008).

  12. 12.

    , & Salmon of the North Pacific Ocean. Part VI. Pink salmon in offshore waters. Int. North Pac. Fish. Comm. Bull. 22, 1–33 (1967).

  13. 13.

    et al. Growth and ionoregulatory ontogeny of wild and hatchery-raised juvenile pink salmon (Oncorhynchus gorbuscha). Can. J. Zool. 87, 221–228 (2009).

  14. 14.

    in Pacific Salmon Life Histories (eds Groot, C. & Margolis, L.) 319–377 (UBC Press, 1991).

  15. 15.

    Estimations of ocean mortality rates for Pacific salmon (Oncorhynchus). J. Fish. Res. Board Can. 19, 561–589 (1962).

  16. 16.

    in Estuarine Comparisons (ed. Kennedy, V. S.) 365–376 (Academic Press, 1982).

  17. 17.

    Timing and relative intensity of size-selective mortality of juvenile chum salmon (Oncorhynchus keta) during early sea life. Can. J. Fish. Aquat. Sci. 39, 952–957 (1982).

  18. 18.

    , , & Carbon dioxide supersaturation in the surface waters of lakes. Science 265, 1568–1570 (1994).

  19. 19.

    , & Carbon dioxide concentration and atmospheric flux in the Hudson River. Estuaries 20, 381–390 (1997).

  20. 20.

    et al. Seasonal carbonate chemistry covariation with temperature, oxygen, and salinity in a fjord estuary: Implications for the design of ocean acidification experiments. PLoS ONE 9, e89619 (2014).

  21. 21.

    & The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 463, 3–33 (2003).

  22. 22.

    et al. CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comp. Biochem. Physiol. A 165, 119–130 (2013).

  23. 23.

    , & Reduced early life growth and survival in a fish in direct response to increased carbon dioxide. Nature Clim. Change 2, 38–41 (2012).

  24. 24.

    , , & Effects of ocean acidification on the early life history of a tropical marine fish. Proc. R. Soc. B 276, 3275–3283 (2009).

  25. 25.

    Effect of temperature and size on development, mortality and survival rates of the pelagic early life history stages of marine fish. Can. J. Fish. Aquat. Sci. 58, 503–518 (1991).

  26. 26.

    , & Optimal size and number of propagules: Allowance for discrete stages and effects of maternal size on reproductive output and offspring fitness. Am. Nature 157, 387–407 (2001).

  27. 27.

    et al. Replenishment of fish populations is threatened by ocean acidification. Proc. Natl Acad. Sci. USA 107, 12930–12934 (2010).

  28. 28.

    et al. Putting prey and predator into the CO2 equation: Qualitative and quantitative effects of ocean acidification on predator–prey interactions. Ecol. Lett. 14, 1143–1148 (2011).

  29. 29.

    , & Detection of conspecific alarm cues by juvenile salmonids under neutral and weakly acidic conditions: Laboratory and field tests. Oecologia 139, 318–324 (2004).

  30. 30.

    , , & The effects of reduced pH on chemical alarm signalling in ostariophysan fishes. Can. J. Fish. Aquat. Sci. 59, 1331–1338 (2002).

  31. 31.

    , & Effects of acid rainfall on juvenile Atlantic salmon (Salmo salar) antipredator behaviour: Loss of chemical alarm function and potential survival consequences during predation. Mar. Freshwat. Res. 60, 1223–1230 (2009).

  32. 32.

    & Effects of acute exposure to acidified water on the behavioral response of fathead minnows, Pimephales promelas, to chemical feeding stimuli. Aquat. Toxicol. 6, 25–36 (1985).

  33. 33.

    , , , & Parental environment mediates impacts of increased carbon dioxide on a coral reef fish. Nature Clim. Change 2, 858–861 (2012).

  34. 34.

    , , , & Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Clim. Change 4, 1086–1089 (2014).

  35. 35.

    An electrophysiological study on the effects of pH on olfaction in mature male Atlantic salmon (Salmo salar) parr. J. Fish Biol. 45, 493–502 (1994).

  36. 36.

    et al. Amino acids dissolved in stream water as possible home stream odorants for masu salmon. Chem. Senses 25, 533–540 (2000).

  37. 37.

    , , , & Amino acids in stream water are essential for salmon homing migration. Fish Physiol. Biochem. 28, 249–251 (2003).

  38. 38.

    & Acidification severely suppresses spawning of hime salmon (land-locked sockeye salmon, Oncorhynchus nerka). Aquat. Toxicol. 51, 107–113 (2000).

  39. 39.

    & Effects of acidification on salmonid spawning behavior. Wat. Air Soil Pollut. 130, 875–880 (2001).

  40. 40.

    , , , & Effects of low pH on upstream migratory behavior in land-locked sockeye salmon Oncorhynchus nerka. Wat. Air Soil Pollut. 130, 99–106 (2001).

  41. 41.

    , , & Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: A synthesis. Phil. Trans. R. Soc. B 368, 20120447 (2013).

  42. 42.

    , , & Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol. Behav. 93, 160–171 (2008).

  43. 43.

    et al. Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav. Brain Res. 208, 450–457 (2010).

  44. 44.

    , , & Gender differences in zebrafish responses to cocaine withdrawal. Physiol. Behav. 95, 36–47 (2008).

  45. 45.

    et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

  46. 46.

    , , & Carbon dioxide partial pressure in the Columbia River. Science 166, 867–868 (1969).

  47. 47.

    , & Seasonal cycle of surface ocean pCO2 on the Oregon shelf. J. Geophys. Res. 116, C05012 (2011).

  48. 48.

    , & Atmospheric CO2 uptake by a coastal upwelling system. Glob. Biogeochem. Cycles 19, GB1009 (2005).

  49. 49.

    , , & High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).

  50. 50.

    , , , & in Biodiversity Loss in a Changing Planet (eds Grillo, O. & Venora, G.) 49–74 (In Tech, 2011).

  51. 51.

    & Thermal acclimation is not necessary to maintain a wide thermal breadth of aerobic scope in the common killifish (Fundulus heteroclitus). Physiol. Biochem. Zool. 85, 107–119 (2012).

  52. 52.

    , , & Post-exercise metabolic rate in Atlantic cod and its dependence upon the method of exhaustion. J. Fish Biol. 47, 377–386 (1995).

  53. 53.

    , , & Thermal sensitivity of metabolic rates and swimming performance in two latitudinally separated populations of cod, Gadus morhuaa L. J. Comp. Physiol. B 177, 447–460 (2007).

  54. 54.

    , , & Little left in the tank: Metabolic scaling in marine teleosts and its implications for aerobic scope. Proc. R. Soc. B 274, 431–438 (2007).

  55. 55.

    Developmental and metabolic constraints of the scope for activity in young rainbow trout (Salmo gairdneri). J. Exp. Biol. 118, 133–142 (1985).

  56. 56.

    & Locomotory behaviour and post-exercise physiology in relation to swimming speed, gait transition and metabolism in free-swimming smallmouth bass (Micropterus dolomieu). J. Exp. Biol. 207, 1563–1575 (2004).

  57. 57.

    , & Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 216, 2771–2782 (2013).

  58. 58.

    et al. Swimming performance and associated ionic disturbance of juvenile pink salmon Oncorhynchus gorbuscha determined using different acceleration profiles. J. Fish Biol. 75, 1626–1638 (2009).

  59. 59.

    , & Anaerobic capacity and swim performance of juvenile salmonids. Can. J. Fish. Aquat. Sci. 55, 1198–1207 (1998).

  60. 60.

    & Relating intramuscular fuel use to endurance in juvenile rainbow trout. Physiol. Biochem. Zool. 75, 250–259 (2002).

  61. 61.

    , , , & Smelling home can prevent dispersal of reef fish larvae. Proc. Natl Acad. Sci. USA 104, 858–863 (2007).

Download references

Acknowledgements

We thank D. Ewart and the staff at Quinsam River Hatchery for providing us with pink salmon embryos and S. Balshine for her comments on the manuscript. Special thanks to G. Fullerton, P. Tamkee, B. Gillespie and the UBC Comphy group for their help and support throughout this project. The project was financially supported by Natural Sciences and Engineering Research Council (NSERC) Discovery grants to C.J.B. and T.J.H. and a NSERC Accelerator Supplement to C.J.B.

Author information

Affiliations

  1. Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

    • Michelle Ou
    • , Junho Eom
    • , Emily M. Lyall
    • , Amy Jiang
    • , Jason Lee
    • , David A. Close
    •  & Colin J. Brauner
  2. Department of Psychology, MacEwan University, Edmonton, Alberta, T5J 4S2, Canada

    • Trevor J. Hamilton
    •  & Joshua Gallup
  3. Fisheries Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

    • David A. Close
    •  & Sang-Seon Yun
  4. Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada

    • Sang-Seon Yun

Authors

  1. Search for Michelle Ou in:

  2. Search for Trevor J. Hamilton in:

  3. Search for Junho Eom in:

  4. Search for Emily M. Lyall in:

  5. Search for Joshua Gallup in:

  6. Search for Amy Jiang in:

  7. Search for Jason Lee in:

  8. Search for David A. Close in:

  9. Search for Sang-Seon Yun in:

  10. Search for Colin J. Brauner in:

Contributions

M.O. and C.J.B. devised the study. M.O., C.J.B., J.E., T.J.H. and S.-S.Y. designed the experiments. M.O., T.J.H., J.E., E.M.L., J.G., A.J. and J.L. conducted the experiments. M.O., E.M.L., J.E. and T.J.H. developed equipment. M.O. and E.M.L. collected water samples and conducted water analyses. M.O. and C.J.B. wrote the manuscript. M.O., C.J.B., T.J.H., J.E., S.-S.Y. and D.A.C. contributed to intellectual input and edited this manuscript. All authors approved this manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Michelle Ou or Colin J. Brauner.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nclimate2694

Further reading