Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Using ecosystem experiments to improve vegetation models

Abstract

Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. By identifying and evaluating the main assumptions causing differences among models, the assumption-centred approach produced a clear roadmap for reducing model uncertainty. Here, we explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aerial views of FACE experiments.

© CURTIS BOLES, ORNL © WILL OWENS, DUKE UNIVERSITY

Figure 2: Comparison of the benchmarking and model–data synthesis approaches to model intercomparison.
Figure 3: Visual summary of findings of FACE-MDS project.

Similar content being viewed by others

References

  1. Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Article  Google Scholar 

  2. Arora, V. K. et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5313 (2013).

    Article  Google Scholar 

  3. Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).

    Article  Google Scholar 

  4. Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon–nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 21, 1–15 (2007).

    Article  Google Scholar 

  5. Sokolov, A. P. et al. Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Clim. 21, 3776–3796 (2008).

    Article  Google Scholar 

  6. Zaehle, S. & Dalmonech, D. Carbon–nitrogen interactions on land at global scales: Current understanding in modelling climate biosphere feedbacks. Curr. Opin. Environ. Sustain. 3, 311–320 (2011).

    Article  Google Scholar 

  7. Zhang, Q., Wang, Y. P., Matear, R. J., Pitman, A. J. & Dai, Y. J. Nitrogen and phosphorus limitations significantly reduce future allowable CO2 emissions. Geophys. Res. Lett. 41, 632–637 (2014).

    Article  CAS  Google Scholar 

  8. Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 . Proc. Natl Acad. Sci. USA 111, 3280–3285 (2013).

    Article  Google Scholar 

  9. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of Free-Air CO2 Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2 . New Phytol. 165, 351–372 (2005).

    Article  Google Scholar 

  10. Norby, R. J. & Zak, D. R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Article  Google Scholar 

  11. Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).

    Article  Google Scholar 

  12. Zaehle, S. et al. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. Glob. Biogeochem. Cycles 24, GB1006 (2010).

    Google Scholar 

  13. Piao, S. L. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob. Change Biol. 19, 2117–2132 (2013).

    Article  Google Scholar 

  14. Walker, A. P. et al. Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest Free-Air CO2 Enrichment experiments: Model performance at ambient CO2 concentration. J. Geophys. Res. Biogeosci. 119, 937–964 (2014).

    Article  CAS  Google Scholar 

  15. Parton, W. J., Anderson, D. W., Cole, C. V. & Stewart, J. W. B. in Nutrient Cycling in Agricultural Ecosystems (eds Lowrance, R. R. et al.) 533–550 (Special Publication No. 23, Univ. Georgia, 1983).

    Google Scholar 

  16. Medvigy, D. et al. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem demography model version 2. J. Geophys. Res. Biogeosci. 114, G01002 (2009).

    Article  Google Scholar 

  17. Comins, H. N. & McMurtrie, R. E. Long-term biotic response of nutrient-limited forest ecosystems to CO2-enrichment: Equilibrium behavior of integrated plant soil models. Ecol. Appl., 3, 666–681 (1993).

    Article  CAS  Google Scholar 

  18. Weng, E. S. & Luo, Y. Q. Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis. J. Geophys. Res. 113, G03003 (2008).

    Article  Google Scholar 

  19. Wang, Y. P. et al. Diagnosing errors in a land surface model (CABLE) in the time and frequency domains. Geophys. Res. Biogeosci. 116, 2005–2012 (2011).

    Google Scholar 

  20. Oleson, K. W. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) (NCAR, 2010).

    Google Scholar 

  21. Wang, S., Trishchenko, A. P. & Sun, X. Simulation of canopy radiation transfer and surface albedo in the EALCO model. Clim. Dyn. 29, 615–632 (2007).

    Article  Google Scholar 

  22. Jain, A. K. et al. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Glob. Biogeochem. Cycles 23, GB4028 (2009).

    Article  Google Scholar 

  23. Zaehle, S. & Friend, A. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, GB1005 (2010).

    Google Scholar 

  24. Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article  Google Scholar 

  25. Woodward, F. I., Smith, T. M. & Emanuel, W. R. A global land primary productivity and phytogeography model. Glob. Biogeochem. Cycles 9, 471–490 (1995).

    Article  CAS  Google Scholar 

  26. McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke Free-Air CO2 Enrichment site: Interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185, 514–528 (2010).

    Article  CAS  Google Scholar 

  27. Norby, R. J., Warren, J. M., Iverson, C. M., Medlyn, B. M. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    Article  CAS  Google Scholar 

  28. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).

    Article  CAS  Google Scholar 

  29. De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: A model–data intercomparison at two contrasting temperate forest FACE sites. Glob. Change Biol. 19, 1759–1779 (2013).

    Article  Google Scholar 

  30. De Kauwe, M. G. et al. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest Free-Air CO2 Enrichment sites. New Phytol. 203, 883–899 (2014).

    Article  CAS  Google Scholar 

  31. Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411, 469–472 (2001).

    Article  CAS  Google Scholar 

  32. McCarthy, H. R. et al. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2 . Glob. Change Biol. 13, 2479–2497 (2007).

    Article  Google Scholar 

  33. Domec, J-C. et al. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (Free-Air CO2 Enrichment) and N-fertilization. Plant Cell Environ. 32, 1500–1512 (2009).

    Article  CAS  Google Scholar 

  34. Norby, R. J., Ledford, J., Reilly, C. D., Miller, N. E. & O'Neill, E. G. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proc. Natl Acad. Sci. USA 101, 9689–9693 (2004).

    Article  CAS  Google Scholar 

  35. Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).

    Article  Google Scholar 

  36. Norby, R. J. et al. Phase 1 Free Air CO2 Enrichment Model-Data Synthesis (FACE-MDS): Meteorological Data (Carbon Dioxide Information Analysis Center, 2015); http://cdiac.ornl.gov/face/metdata1.html

    Google Scholar 

  37. Walker, A. P. et al. Phase 1 Free Air CO2 Enrichment Model-Data Synthesis (FACE-MDS): Model Output Data (Carbon Dioxide Information Analysis Center, 2015); http://cdiac.ornl.gov/face/model1.html

    Google Scholar 

  38. Luo, Y. Q. et al. A framework for benchmarking land models. Biogeosciences 9, 3857–74 (2012).

    Article  Google Scholar 

  39. Medlyn, B. E., Robinson, A. P., Clement, R. & McMurtrie, R. E. On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls. Tree Physiol. 25, 839–857 (2005).

    Article  Google Scholar 

  40. Luo, Y. & Weng, E. Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol. Evol. 26, 96–104 (2011).

    Article  Google Scholar 

  41. Medlyn, B. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: A synthesis. New Phytol. 149, 247–264 (2001).

    Article  Google Scholar 

  42. Ainsworth, E. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    Article  CAS  Google Scholar 

  43. Barton, C. V. M. et al. Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Glob. Change Biol. 18, 585–595 (2011).

    Article  Google Scholar 

  44. Iversen, C. M., Ledford, J. & Norby, R. J. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytol. 179, 837–847 (2008).

    Article  CAS  Google Scholar 

  45. Franklin, O. et al. Modeling carbon allocation in trees: A search for principles. Tree Physiol. 32, 648–666 (2012).

    Article  CAS  Google Scholar 

  46. Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).

    Article  CAS  Google Scholar 

  47. Phillips, R. P., Finzi, A. F. & Bernhardt, E. S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).

    Article  Google Scholar 

  48. Drake, J. E. et al. Stoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest. Biogeosciences 10, 821–838 (2013).

    Article  Google Scholar 

  49. Iversen, C. M., Hooker, T. D., Classen, A. T & Norby, R. J. Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2]. Glob. Change Biol. 17, 1130–1139 (2011).

    Article  Google Scholar 

  50. Grant, R. F. Modelling changes in nitrogen cycling to sustain increases in forest productivity under elevated atmospheric CO2 and contrasting site conditions. Biogeosciences 10, 7703–7721 (2013).

    Article  CAS  Google Scholar 

  51. Cheng, W. et al. Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 201, 31–44 (2014).

    Article  CAS  Google Scholar 

  52. Farquhar, G. D. & Von Caemmerer, S. in Physiological Plant Ecology II (eds Lange, O. L. et al.) 549–587 (Springer, 1982).

    Book  Google Scholar 

  53. Xu, C. et al. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE 7, e37914 (2012).

    Article  CAS  Google Scholar 

  54. Friend, A. Modelling canopy CO2 fluxes: Are 'big-leaf' simplifications justified? Glob. Ecol. Biogeogr. 10, 603–619 (2001).

    Article  Google Scholar 

  55. Jarvis, P. & McNaughton, K. Stomatal control of transpiration: Scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49 (1986).

    Article  Google Scholar 

  56. Raupach, M. & Finnigan, J. 'Single-layer models of evaporation from plant canopies are incorrect but useful, whereas multilayer models are correct but useless': Discuss. Funct. Plant Biol. 15, 705–716 (1988).

    Article  Google Scholar 

  57. Wullschleger, S. D., Gunderson, C., Hanson, P., Wilson, K. & Norby, R. Sensitivity of stomatal and canopy conductance to elevated CO2 concentration–interacting variables and perspectives of scale. New Phytol. 153, 485–496 (2002).

    Article  CAS  Google Scholar 

  58. Egea, G., Verhoef, A. & Vidale, P. L. Towards an improved and more flexible representation of water stress in coupled photosynthesis–stomatal conductance models. Agr. Forest Meteorol. 151, 1370–1384 (2011).

    Article  Google Scholar 

  59. Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agr. Forest Meteorol. 182–183, 204–214 (2013).

    Article  Google Scholar 

  60. Dietze, M. C. & Moorcroft, P. R. Tree mortality in the eastern and central United States: Patterns and drivers. Glob. Change Biol. 17, 3312–3326 (2011).

    Article  Google Scholar 

  61. Carvalhais, N. et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217 (2014).

    Article  CAS  Google Scholar 

  62. Best, M. J. et al. The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes. Geosci. Model Dev. Discuss. 4, 595–640 (2011).

    Article  Google Scholar 

  63. Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model. Glob. Change Biol. 9, 161–185 (2003).

    Article  Google Scholar 

  64. Ball, J. T., Woodrow, I. E. & Berry, J. A. in Progress in Photosynthesis Research (ed. Biggins, I.) 221–224 (Martinus Nijhoff, 1987).

    Book  Google Scholar 

  65. Xia, J. Y., Luo, Y. Q., Wang, Y. P. & Hararuk, O. Traceable components of terrestrial carbon storage capacity in biogeochemical models. Glob. Change Biol. 19, 2104–2116 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The ORNL and Duke FACE sites and synthesis activities were supported by the US Department of Energy Office of Science, Biological and Environmental Research programme. This work was initiated under the Benchmarking Ecosystem Response Models with Experimental Data from Long-Term CO2 Enrichment Experiments Working Group supported by the National Center for Ecological Analysis and Synthesis, a centre financially supported by the National Science Foundation (grant EF-0553768), the University of California, Santa Barbara, and the state of California. M.D.K. was also supported by ARC discovery grant DP1094791. S.Z. was also supported by the European Community's Seventh Framework Programme FP7 people programme through grants PERG02-GA-2007-224775 and 238366. T.H. was also supported through the LOEWE initiative for scientific and economic excellence of the German federal state of Hesse. This work is a contribution to the AXA Chair Programme in Biosphere and Climate Impacts and the Grand Challenges in Ecosystems and the Environment initiative at Imperial College. A.K.J. was also supported by the NSF (NSF AGS 12-43071), the US Department of Energy (DOE DE-SC0006706) and NASA LCLUC programme (NASA NNX14AD94G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda E. Medlyn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medlyn, B., Zaehle, S., De Kauwe, M. et al. Using ecosystem experiments to improve vegetation models. Nature Clim Change 5, 528–534 (2015). https://doi.org/10.1038/nclimate2621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2621

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology